

# Mid-term Exam

## EE1C21 “Linear Circuits B”

Place:

Date:

Time:

- This exam consists of 4 exercises.
- Each exercise accounts for **10 points**; the total number of points to be obtained is **40**. The grade is obtained dividing the total number of points by 4, rescaling linearly the result to the 1-10 scale and rounding off to 1 decimal.
- **Each exercise must be solved on a separate double-sheet.** Writing more solutions on the same sheet may result in only one of the solutions being graded!
- Indicate your name and study number on **each** submitted sheet. **You must hand in (blank) signed sheets even for the exercises that you do not handle.**
- Students benefitting of the “Extra Time” (ET) rule are entitled to a 20 minutes extension of their exam provided they produce the relevant supporting document.
- Should any question not be completely clear, you are allowed to ask the instructors in the exam hall; the answer will be confined to rephrasing the text of the exercise such that to make it more intelligible.
- Should a part of an exercise depend on a previous result, mistakes made at a previous step will only be penalised once.
- Give your solution as completely as possible and never state numerical results without indicating how you derived them. **Simply stating numerical results will yield no points.**
- **Fill in the measure units for all calculated quantities.** This holds for intermediate results but definitely for the final ones.
- Write clearly; avoid messy solutions; should errors occur in your solution, cross the erratic part out and give clear indication on where the correct solution resumes.
- For this exam you are allowed to use:
  - i. a simple calculator – programmable and graphing calculators are explicitly prohibited;
  - ii. a handwritten, double-sided A4 sheet with formulas.
- This exam is provided only in English. Instructors will provide assistance with the Dutch translation of formulations that you may have difficulties to understand.

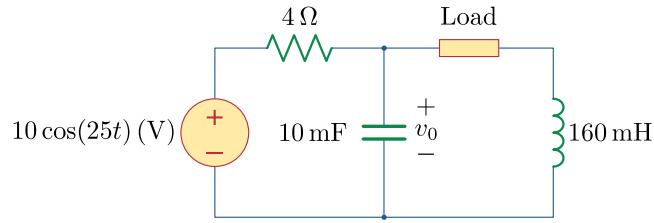
**The Linear Circuits team wishes you a lot of success!**

Summary of Bode straight-line magnitude and phase plots.

| Factor                                                                                        | Magnitude                | Phase                 |
|-----------------------------------------------------------------------------------------------|--------------------------|-----------------------|
| $K$                                                                                           | $20 \log_{10} K$         | $0^\circ$             |
| $(j\omega)^N$                                                                                 | $20N \text{ dB/decade}$  | $90N^\circ$           |
| $\frac{1}{(j\omega)^N}$                                                                       | $-20N \text{ dB/decade}$ | $-90N^\circ$          |
| $\left(1 + \frac{j\omega}{z}\right)^N$                                                        | $20N \text{ dB/decade}$  | $0^\circ, 90^\circ$   |
| $\frac{1}{(1 + j\omega/p)^N}$                                                                 | $-20N \text{ dB/decade}$ | $0^\circ, -90^\circ$  |
| $\left[1 + \frac{2j\omega\zeta}{\omega_0} + \left(\frac{j\omega}{\omega_0}\right)^2\right]^N$ | $40N \text{ dB/decade}$  | $0^\circ, 180^\circ$  |
| $\frac{1}{[1 + 2j\omega\zeta/\omega_0 + (j\omega/\omega_0)^2]^N}$                             | $-40N \text{ dB/decade}$ | $0^\circ, -180^\circ$ |

Reproduced from C. Alexander and M. Sadiku, *Fundamentals of Electric Circuits*, 6th ed., NY: McGraw-Hill, 2016 for private use during the EE1C21-B exam, only. **Reproduction and dissemination, in any form, of this table is prohibited.**

**- Take a new double-sheet -**


### Exercise 1

- a) By using the phasor-domain representation, determine the current  $i(t)$  given by the expression:

$$9i + 14 \int i dt + 2 \frac{di}{dt} = 18 \cos(7t + 45^\circ).$$

Give the final answer in the form  $A \cos(\omega t + \varphi^\circ)$ . (4 points)

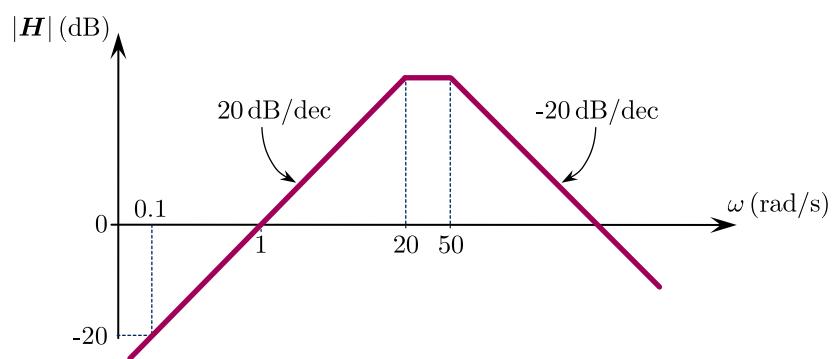
Now consider the following circuit, in which “load” is a *passive* circuit section:



- b) By knowing that the phasor-domain correspondent of  $v_0$  is  $\mathbf{V}_0 = 5 \angle 0^\circ$ , determine the complex impedance  $\mathbf{Z}$  of the load. (6 points)

*Indicate the measure units for all calculated quantities. Show all steps in your reasoning and never give numerical results without justification.*

## - Take a new double-sheet -


### Exercise 2

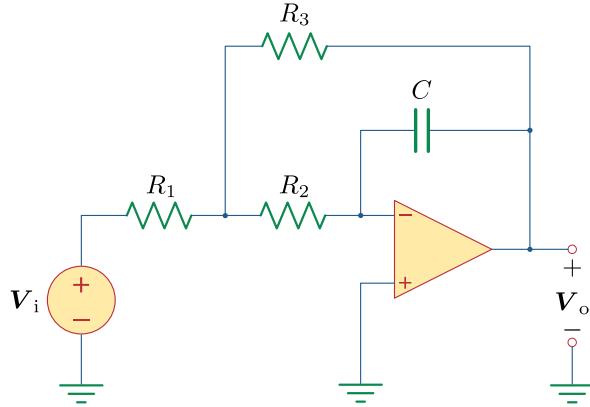
Consider the following transfer function:

$$H(s) = \frac{100 + 100s}{s(10s + 100)}, \quad s = j\omega.$$

- Construct the Bode magnitude plot  $|H(s)|$ . (4 points)
- Construct the Bode phase plot  $\angle H(s)$ . (3 points)

Now consider the following Bode magnitude plot:




- Determine the corresponding transfer function  $H(s)$ . (3 points)

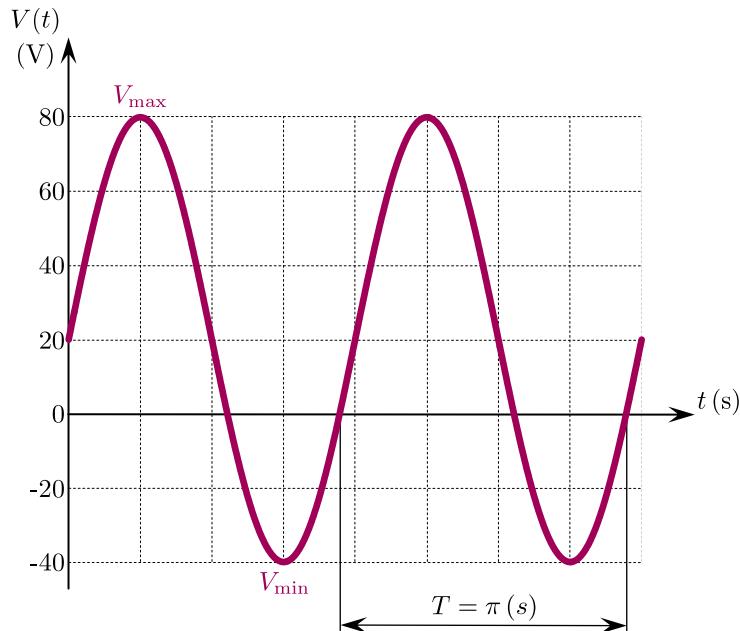
*Indicate the measure units for all calculated quantities (when applicable). Show all steps in your reasoning and never give numerical results without justification.*

## - Take a new double-sheet -

### Exercise 3

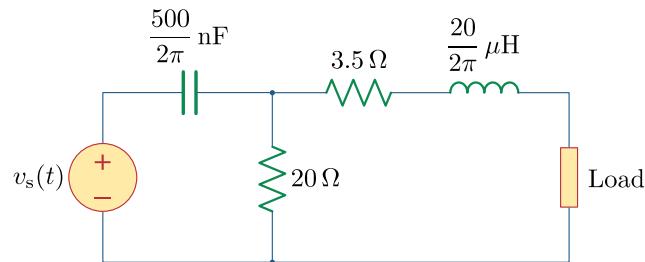
Consider the circuit in the figure below, in which  $R_1 = 2R$ ,  $R_2 = R_3 = R = 1\text{k}\Omega$  and  $C = 100\text{nF}$ :




- a) Determine the transfer function  $H(s) = V_o(s)/V_i(s)$  for  $s = j\omega$ . (5 points)
- b) Based on the obtained transfer function specify the type of the filter (low-pass, high-pass, band-pass or band-stop). (1 point)
- c) Calculate the filter's corner frequency  $\omega_0$ . (2 points)
- d) Calculate the decibel magnitude of  $H(s)$  at that frequency. (1 point)
- e) Calculate the phase (in degree) of  $H(s)$  at that frequency. (1 point)

*Indicate the measure units for all calculated quantities. Show all steps in your reasoning and never give numerical results without justification.*

## - Take a new double-sheet -


### Exercise 4

Consider the *sinusoidal, periodic* signature in the figure below:



a) Calculate its *rms* value. (4 points)

Now consider the circuit in the figure below, in which  $v_s(t) = 10\cos(\omega t)$  (V), with the corresponding frequency being  $f = 10^5$  Hz:



b) Determine the *complex load impedance*  $Z_L$  that will receive the maximum power from the circuit. Calculate that maximum power  $P_{\max}$  delivered to the load under this condition. (4 points)

c) Determine the value of the resistance  $R_L$  for maximum power dissipation if only *real* values are allowed for the load. (2 points)

**Indicate the measure units for all calculated quantities. Show all steps in your reasoning and never give numerical results without justification.**