
Het nieuwe TU-logo is omgeven door een witte rand:

De volgende boundingbox moet meegegeven worden om deze witte rand te
laten verdwijnen:

De witte rand wordt nu nog wel ”geprint”. Door ”clip” mee te geven gebeurt
dit niet.

Om mezelf te overtuigen: vergelijk de volgende twee.

ook de tekst kan verwijdert worden:

Exam 2 - EE1M1 Calculus (30/01/2024 09:00 - 11:00)
Fill in your personal information and

write down your answers for the eight short-answer questions and
write down all your steps for the five open question and

hand in when finished.

You are allowed to use:
• Pen, pencils and scrap paper;
• A simple calculator;
• The formula sheet;
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Short-answer questions
An explanation is not required for the short-answer questions. Only the answer matters. The
maximum points per question is indicated in the margin.
Clearly write the answer in the box. You do not need to fully simplify your answers.

1. (2 +2 pt) Let f(x, y) = 3x3 − 2xy2.

a. Compute the gradient ∇f of f .

b. For which direction u does Duf(1, 2) reach its minimal value?

A correct solution is: a. The gradient can be found by computing the partial derivatives
of f . We have

fx = 9x2 − 2y2, fy = −4xy

It follows that ∇f = ⟨9x2 − 2y2,−4xy⟩.
b. The minimal value of the directional derivative is reached in the direction of −∇f(1, 2).
We compute −∇f(1, 2) = −⟨1,−8⟩ = ⟨−1, 8⟩. Any positive multiple of this vector is a

correct answer, including the normalized version
〈
− 1√

65
, 8√

65

〉
.

2. (4 pt) Find all critical points of the function f(x, y) = x2 − 2x + 3y − y3 and classify them as
local maxima, local minima or saddle points.

A correct solution is: The critical points can be found by finding the points where both
partial derivatives are 0. We compute

fx = 2x− 2, fy = 3− 3y2.

Setting fx = 0 yields x = 1, while setting fy = 0 yields y = −1 or y = 1. Hence, f has two
critical points, (1,−1) and (1, 1). We can classify these by using the second derivatives
test. We first compute

fxx = 2, fxy = fyx = 0, fyy = −6y.

The discriminant can now be evaluated as D = fxxfyy − f 2
xy = −12y. So we find

D(1,−1) = 12 and D(1, 1) = −12. Since fxx(1,−1) = 2 > 0, f has a local minimum
at (1,−1), while f has a saddle point at (1, 1).

3. (4 pt) Reverse the order of integration for

∫ 4

0

∫ 1

1−x
2

f(x, y) dy dx and give the resulting integral.

A correct solution is: We need to sketch the region of integration in order to switch the
order of integration. The limits for y yield that 1− x

2
≤ x ≤ 1, so the region is bounded in

between the lines y = 1− x
2
and y = 1. These lines intersect at (0, 1). Since the limits for

x yield that 0 ≤ x ≤ 4, we can conclude that the region of integration is a triangle with
vertices (0, 1), (4, 1) and (4,−1). In order to describe this region as a type II (x-simple)
region, we should first find the new limits for x. The triangle is bounded on the left by
the line y = 1− x

2
, i.e. the line x = 2−2y, and on the right by the line x = 4. In addition,

the allowed values for y range from −1 at one of the vertices to 1 at the line between the
other two vertices. So we obtain∫ 4

0

∫ 1

1−x
2

f(x, y) dy dx =

∫ 1

−1

∫ 4

2−2y

f(x, y) dx dy.
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4. (4 pt) Is the vector field F(x, y, z) = ⟨zexz, 1 + z, xexz + y⟩ conservative? If it is conservative,
give a potential function.

A correct solution is: If ϕ were a potential for F, then, since
∂ϕ

∂x
= zexz, we should have

ϕ = exz + h(y, z), where h is a function of only y and z. Since
∂ϕ

∂y
=

∂h

∂y
, we should have

∂h

∂y
= 1+z. Hence, we must have that h(y, z) = y+yz+g(z), where g is a function of only

z. So we must have ϕ = exz+y+yz+g(z). Finally, we compute
∂ϕ

∂z
= xexz+y+

dg

dz
, which

should be equal to xexz + y. This is true whenever g is a constant. So F is conservative
and ϕ = exz + y + yz + C is a potential function for any constant C.

5. (6 pt) Let D be the region in R2 bounded by the circle (x − 2)2 + y2 = 4, the x-axis and the
line y = x. A charge density q(x, y) is distributed over this region. Express the net total
charge Q on D as a double integral in polar coordinates.

A correct solution is: We first describe the region D in polar coordinates. The lowest
value of r occurs at the origin, where r = 0. The circle (x − 2)2 + y2 = 4 can be written
as x2 − 4x + 4 + y2 = 4, i.e. x2 + y2 = 4x. In polar coordinates, this equation becomes
r2 = 4r cos(θ), i.e. r = 4 cos(θ).

The circle is contained entirely in the right-half plane, i.e. the part of R2 with x ≥ 0,
so we only need to consider points with x ≥ 0. The positive x-axis consists of all points
which make angle 0 with the positive x-axis, so it can be described as the equation θ = 0.
Finally, the part of the line y = x with x ≥ 0 consists of all points which make angle π

4

with the positive x-axis, so it can be described as the equation θ = π
4
.

So D = {(r cos(θ), r sin(θ) | 0 ≤ r ≤ 4 cos(θ), 0 ≤ θ ≤ π
4
}. We conclude that

Q =

∫∫
D
σ(x, y) dA =

∫ π
4

0

∫ 4 cos(θ)

0

σ(r cos θ, r sin(θ))r dr dθ.

Here we inserted the polar coordinates x = r cos(θ), y = r sin(θ) into the integrand σ(x, y)
and we multiplied the entire integrand by the Jacobian r.

6. (6 pt) Let E be the solid region in R3 which is given by the part with y ≤ 0 of the re-
gion in between the cone z =

√
3x2 + 3y2 and the plane z = 2. Express the integral∫∫∫

E

√
x2 + y2 + z2 dV as a triple integral in spherical coordinates.

You do not need to evaluate the integral!

A correct solution is: We first describe the region E in spherical coordinates. The cone
and the plane are both rotationally symmetric around the z-axis, so these do not restrict
the values of θ. Only the condition y ≤ 0 restricts θ, and y ≤ 0 corresponds to π ≤ θ ≤ 2π.

The cone z =
√

3x2 + 3y2 can be described by ρ cos(ϕ) =
√

3ρ2 sin(ϕ)2 =
√
3ρ sin(ϕ), since

ρ and sin(ϕ) are both positive. This equation yields cos(ϕ) =
√
3 sin(ϕ), i.e. tan(ϕ) = 1√

3
.

This equation has only one solution with 0 ≤ ϕ ≤ π, which means that the cone can be

page 3 of 6



described as ϕ = π
6
.

The plane z = 2 becomes ρ cos(ϕ) = 2, or ρ = 2
cos(ϕ)

.

The variable ρ starts at the origin, where ρ = 0 and ends at the plane. ϕ starts at the
point (0, 0, 2) where ϕ = 0 and ends at the cone. Combining these yields that E can be
described as

E = {(ρ sin(ϕ) cos(θ), ρ sin(ϕ) sin(θ), ρ cos(ϕ) | 0 ≤ ρ ≤ 2

cos(ϕ)
, 0 ≤ ϕ ≤ π

6
, π ≤ θ ≤ 2π}.

The integrand
√

x2 + y2 + z2 becomes ρ in spherical coordinates. So by multiplying with
the Jacobian ρ2 sin(ϕ), we find∫∫∫

E

√
x2 + y2 + z2 dV =

∫ 2π

π

∫ π
6

0

∫ 2
cos(ϕ)

0

ρ3 sin(ϕ) dρ dϕ dθ.

Open questions
The next questions need to be worked out completely, every answer needs to be reasoned. Make
the exercises in the box. If necessary, there is extra space at the back of the exam. If you use
this extra space, clearly indicate the numbering of the questions there AND write in the regular
answer box that you use the extra space. The maximum points per question is indicated in the
margin.

7. (6 pt) Let C be the triangle with vertices (0, 0), (−1, 2) and (−1,−2) with clockwise orientation.

Evaluate

∮
C
(2y − cos(x)) dx+

(
4x+ e2y

)
dy.

A correct solution is: Let D be the region enclosed by C. Then C has a negative
orientation with respect to D. Hence, we apply Green’s theorem to the curve −C. We
obtain∮

C
(2y − cos(x)) dx+

(
4x+ e2y

)
dy = −

∮
−C

(2y − cos(x)) dx+
(
4x+ e2y

)
dy

= −
∫∫

D

(
∂(4x+ e2y)

∂x
− ∂(2y − cos(x))

∂y

)
dA = −

∫∫
D
2 dA = −2Area(D).

Since D is the filled triangle with vertices (0, 0), (−1, 2) and (−1,−2) it has area 2. We
conclude ∮

C
(2y − cos(x)) dx+

(
4x+ e2y

)
dy = −2Area(D) = −4.

8. (8 pt) Let D be the region in R2 bounded in between the parabola y = x2 and the line y = 2. Find
the absolute minimum and absolute maximum of the function f(x, y) = 6x4+y3−6y2+9y
on D and the points at which these values occur.

A correct solution is: We first find the critical points of f . For this we compute the
partial derivatives

fx = 24x3, fy = 3y2 − 12y + 9.
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Setting fx = 0 yields x = 0, while setting fy = 0 yields y = 1 or y = 3. So the critical
points are (0, 1) and (0, 3). However, (0, 3) is outside of the region D, so we should discard
it. For future reference, we compute f(0, 1) = 4.

The parabola y = x2 and y = 2 intersect at the points (−
√
2, 2) and (

√
2, 2). We first

consider the behaviour of f on y = x2 for −
√
2 ≤ x ≤

√
2. We compute

f(x, x2) = 6x4 + x6 − 6x4 + 9x2 = x6 + 9x2.

Differentiating this expression with respect to x yields 5x5+18x, which is only 0 for x = 0.
The relevant points on this curve are, therefore, (0, 0) as well as the end points (−

√
2, 2)

and (
√
2, 2). We compute f(0, 0) = 0, f(−

√
2, 2) = 26 and f(

√
2, 2) = 26.

For the behaviour of f on y = 2 for −
√
2 ≤ x ≤

√
2, we compute

f(x, 2) = 6x4 + 2.

Differentiating this expression with respect to x yields 24x3, which is only 0 for x = 0.
The only new relevant point is, therefore, the point (0, 2), where f(0, 2) = 2.

Since we have found all candidate locations for the absolute minimum and the absolute
maximum, we only need to compare the computed function values. We find that f has an
absolute minimum of 0 at (0, 0) and it has an absolute maximum of 26 at (−

√
2, 2) and

(
√
2, 2).

9. (6 pt) Consider the coordinate transformation

{
u = 2x+ y
v = x− 2y

. Let D be the region enclosed

by the lines y = 3−2x, y = 4−2x, y = x
2
−1 and y = x

2
−2. Express and evaluate the inte-

gral

∫∫
D
(3x−y)2 dA using uv-coordinates. If needed, you may use that

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

.

A correct solution is: We first rewrite the lines y = 3− 2x, y = 4− 2x, y = x
2
− 1 and

y = x
2
− 2 into forms that can more easily be rewritten into u, v-coordinates by writing

them as 2x+y = 3, 2x+y = 4, x−2y = 2 and x−2y = 4 respectively. In u, v-coordinates,
these lines become u = 3, u = 4, v = 2 and v = 4 respectively.

The integrand is given in u, v-coordinates by (3x− y)2 = (u+ v)2.

Finally, we compute the Jacobian
∂(x, y)

∂(u, v)
, which we can do in two different ways. We

can either express x and y in terms of u and v by writing x = 2
5
u + 1

5
v and y = 1

5
u − 2

5
v

and then computing
∂(x, y)

∂(u, v)
= 2

5
· (−2

5
) − 1

5
· 1
5
= −1

5
. Or, we can use the hint and write

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

= 1
2·(−2)−1·1 = −1

5
.

Hence, we can compute∫∫
D
(3x− y)2 dA =

∫ 4

3

∫ 4

2

(u+ v)2
∣∣∣∣−1

5

∣∣∣∣ dv du =
256

15
.

page 5 of 6



10. (6pt) Let C be the curve in R3 that starts at the point (1, 0, 0) and spirals once around the
cylinder x2+ z2 = 1 along a circular helix in counterclockwise direction when viewed from
the negative y-axis, and ends at the point (1, 2π, 0). Consider the vector field

F = ⟨2xyz, x2z + 1 + x, x2y⟩. Evaluate
∮
C
F · dr.

A correct solution is: The vector field F is not conservative, but it can be written as
F1+F2, where F1 = ⟨2xyz, x2z + 1, x2y⟩ and F2 = ⟨0, x, 0⟩. Then F1 is conservative with
potential function f(x, y, z) = x2yz + y. Hence, with the fundamental theorem for line
integrals we can evaluate∮

C
F1 · dr = f(1, 2π, 0)− f(1, 0, 0) = 2π − 0 = 2π.

For the line integral

∮
C
F2 · dr, we parametrize C as ⟨cos(t), t, sin(t)⟩ for 0 ≤ t ≤ 2π. Then

we can compute∮
C
F2 · dr =

∫ 2π

0

⟨0, cos(t), 0⟩ · ⟨− sin(t), 1, cos(t)⟩ dt =
∫ 2π

0

cos(t) dt = 0.

So in total, we obtain ∮
C
F · dr =

∮
C
F1 · dr+

∮
C
F2 · dr = 2π.

Alternatively, we can also evaluate

∮
C
F ·dr directly using the parametrization used above,

by computing∮
C
F·dr =

∫ 2π

0

〈
2 cos(t)t sin(t), cos2(t) sin(t) + 1 + cos(t), cos2(t) sin(t)

〉
·⟨− sin(t), 1, cos(t)⟩ dt

= ... = 2π.

Grade =
obtained points

6
+ 1
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