
Exam 2 - EE1M1 Calculus (28/01/2025 09:00 - 11:00)
Fill in your personal information and

answer the seven questions in Grasple and
write down all your steps for the four open question and

submit in when finished.

Student number:

You are allowed to use:
• Pen, pencils and scrap paper.

How to start your exam:

1. Go to the Brightspace page of this course.

2. From 15 minutes before the scheduled start time:
Click on the link to Grasple in the new exam announcement.

3. Log in using your TU Delft credentials (a.k.a. NetID).
You should be able to do this without a password manager!

4. Open the provided test and click the Launch Schoolyear browser button.

5. Schoolyear will start, after which you again log in using your TU Delft credentials.

6. From 5 minutes past the scheduled start time:
Start, perform and submit the test shown.

When you are finished with the exam, please follow these steps:

1. Submit the exam in Grasple.

2. Close Schoolyear.

3. Gather all your items and move quietly to the exit of the exam room.

4. Hand in all scrap paper at the exit.

5. Hand in this exam sheet.

6. Leave the exam room.
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Formula sheet

Some trigonometric formulae

sin(2α) = 2 sin(α) cos(α)
cos(2α) = 2 cos2(α)− 1 = 1− 2 sin2(α) = cos2(α)− sin2(α)

Some limits

lim
x→∞

xp

ex
= 0

lim
x→∞

(
1 +

a

x

)x

= ea

lim
x→∞

lnx

xp
= 0 (p > 0)

Some integrals∫
dx

sin(x)
= ln

∣∣∣tan(x
2

)∣∣∣+ C∫
dx

cos(x)
= ln

∣∣∣tan(x
2
+

π

4

)∣∣∣+ C∫
dx

1 + x2
= arctan(x) + C∫

dx

1− x2
=

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ C∫
dx√
1− x2

= arcsin(x) + C = − arccos(x) + C∫
dx√
x2 + 1

= ln
(
x+

√
x2 + 1

)
+ C∫

dx√
x2 − 1

= ln
∣∣x+

√
x2 − 1

∣∣+ C∫ √
1 + x2 dx =

1

2
x
√
1 + x2 +

1

2
ln
(
x+

√
1 + x2

)
+ C∫ √

1− x2 dx =
1

2
x
√
1− x2 +

1

2
arcsin(x) + C

∫ π
2

0

sinn x dx =


n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 3

4

1

2

π

2
if n even and n ≥ 2

n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 4

5

2

3
if n odd and n ≥ 3
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Short-Answer questions (total: 44 points)
Note: The short-answer questions on Grasple are parametrized, meaning that your
version of the exercise may contain different numbers than those presented in the
solutions below. In any case, the ideas behind the calculations remain the same.

1. (1 + 4 pt) Consider the vector fields
F(x, y, z) = ⟨5x+ 2z, ze2yz, 2x+ ye2yz⟩ and
G(x, y, z) = ⟨xe2xz + 2y, 2x+ 4y, ze2xz⟩.
(a.) Which of the two has a potential?
(b.) Give a potential of the vector field above which has a potential. (You do not have to
add a constant of integration.)

A correct solution is:
(a.) Suppose a vector field H = ⟨P,Q,R⟩ has a potential ϕ, i.e. ϕx = P , ϕy = Q ϕz = R.
Clairaut’s theorem now tells us that

Py = ϕxy = ϕyx = Qx.

Similarly, we find that Pz = Rx and Qz = Ry. In particular, the functions Qx−Py, Pz−Rx

and Ry −Qz should all be 0 when H has a potential.

Here ∂
∂z

(xe2xz + 2y) − ∂
∂x

(ze2x) = 2(x2 − z2)e2xz ̸= 0, so G cannot be conservative. On
the other hand, for F all three the corresponding functions are 0 and in the upcoming
subquestion we will construct a potential for F.

(b.) To find a potential ϕ we have to solve
∂ϕ

∂x
(x, y, z) = 5x+2z,

∂ϕ

∂y
(x, y, z) = ze2yz, and

∂ϕ

∂z
(x, y, z) = 2x+ ye2yz. From the first equation we find

ϕ(x, y, z) =

∫
(5x+ 2z) dx =

25

2
x2 + 2xz + C(y, z)

where the constant of integration C(y, z) is allowed to depend on y and z.

Plugging this ϕ into the second equation we get

ze2yz =
∂ϕ

∂y
(x, y, z) =

∂C

∂y
(y, z)

which means
∂C

∂y
(y, z) = ze2yz, so C(y, z) = e2yz

2
+D(z) where D(z) does not depend on y.

Plugging ϕ(x, y, z) = 2x+ ye2yz +
dD

dz
(z) into the final equation we get

2x+ ye2yz =
∂ϕ

∂z
(x, y, z) = 2x+ ye2yz +

dD

dz
(z)

This means 0 = dD
dz
(z), so D(z) = E, where E is a constant which does not depend on

either x, y or z.

Therefore, a potential is given by ϕ(x, y, z) = 5x2

2
+ 2xz + e2yz

2
. All other potentials differ

from this one by a constant.
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2. (4 pt) Consider the function g(x, y, z) of which the gradient vector at the point (−4, 4,−5) is
given by

∇g(−4, 4,−5) =

−9
7
−3

.
Calculate the maximum value of the directional derivative of g(x, y, z) at the point (−4, 4,−5).

A correct solution is: The maximum value of the directional derivative is |∇f(−4, 4,−5)|.
Thus

|∇f(−4, 4,−5)| =
√

(−9)2 + (7)2 + (−3)2 =
√
139

3. (8 pt) Consider the function f(x, y) = 3x2y + x2 + 8y2. The points P = (0, 0) and Q =
(
4
3
,−1

3

)
.

are critical points of f .
Use the second derivatives test to determine the type of the critical points P and Q.

A correct solution is: In order to apply the second derivatives test, we first compute the
partial derivatives of f . We obtain fx(x, y) = 6xy+2x and fy(x, y) = 3x2 +16y. Next we
compute the second derivatives of f to obtain fxx(x, y) = 6y+2, fxy(x, y) = fyx(x, y) = 6x
and fyy(x, y) = 16. To classify these critical points, we need to evaluate the function
D(x, y) = fxx(x, y)fyy(x, y)− fx,y(x, y)

2 at these points.

For the point P we obtain D(0, 0) = 2 · 16 − 02 = 32. Since D(0, 0) > 0 and fxx(0, 0) =
2 > 0, the second derivatives test tells us that f attains a local minimum at P .

For the point Q we obtain D
(
4
3
,−1

3

)
= 0 · 16− 82 = −64. Since D

(
4
3
,−1

3

)
< 0 the second

derivatives test us that Q is a saddle point.

4. (4 + 4 pt) We want to evaluate

∫
C
(2xy2 +5) ds with C the curve on the circle x2 + y2 = 0 from (3, 0)

to (0, 3) in counterclockwise direction.
Our goal is to rewrite the line integral as a regular single integral. You do not need to
evaluate the integral.
(a.) Give a parametrization r(t) = ⟨x(t), y(t)⟩ of C with lb ≤ t ≤ ub.

(b.) We write the integral as

∫
C
(2xy2 + 5) ds =

∫ ub

lb

f(t) dt.

Give the integrand f(t).

A correct solution is:
(a.) A convenient way to parametrize (a part of) a circle with radius r in counterclock-
wise direction is to use x(t) = r cos(t) and y(t) = r sin(t). Therefore, we can choose
x(t) = 3 cos(t) and y(t) = 3 sin(t). In order to ensure that the curve starts at (3, 0) and
ends at (0, 3), we should choose lb = 0 and ub = π

2
.

(b.) In general, a line integral can be evaluated as∫
C
g(x, y) ds =

∫ ub

lb

g(x(t), y(t))
√
x′(t)2 + y′(t)2 dt

Substituting x = 3 cos(t) and y = 3 sin(t) into 2xy2 + 5, we obtain the expression
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54 sin2(t) cos(t) + 5. In addition, we can compute√
x′(t)2 + y′(t)2 =

√
(−3 sin(t))2 + (3 cos(t))2 = 3.

So, we must have f(t) = 3(54 sin2(t) cos(t) + 5).

5. (9 pt) Let E be a solid. Suppose that the integral

∫∫∫
E

f(x, y, z) dV can be written as the

iterated integral

∫ 2

0

∫ 5− 5
2
x

0

∫ 3− 3
5
z

0

f(x, y, z) dy dz dx. Change the order of integration to

write this integral as

∫ ...

...

∫ ...

...

∫ ...

...

f(x, y, z) dx dz dy.

A correct solution is: Inspecting the original iterated integral, the limits of the in-
nermost integral (over y) yield that the region E is bounded by the planes y = 0 and
y = 3− 3

5
z. From the limits of the middle integral (over z) we can deduce that the lowest

value of z is z = 0. We find that in the new iterated integral the lower limit for y is 0,
while the upper limit is 3− 3

5
· 0 = 3.

Inspecting the original iterated integral, the limits of the innermost integral (over y) yield
that the region E is bounded by the planes y = 0 and y = 3− 3

5
z, i.e. z = 5− 5y

3
. From

the limits of the middle integral (over z) we can deduce that the region is also bounded
by the plane z = 0 (the value z = 5− 5

2
x will, in the new integration order, be taken care

of in the innermost integral over x). We find that in the new iterated integral the lower
limit for z is 0, while the upper limit is 5− 5y

3
.

Inspecting the original iterated integral, the limits of the middle integral (over z) yield
that the region E is bounded by the planes z = 0 and z = 5− 5

2
x, i.e. x = 2− 2z

5
. From

the limits of the outer integral (over x) we can deduce that the region is also bounded by
the plane x = 0 (the value x = 2 is consistent with the intersection point of the planes
z = 0 and z = 5− 5

2
x). The limits of the inner integral (over y) do not involve x. We find

that in the new iterated integral the lower limit for x is 0, while the upper limit is 2− 2z
5
.

In total we find

∫ 2

0

∫ 5− 5
2
x

0

∫ 3− 3
5
z

0

f(x, y, z) dy dz dx =

∫ 3

0

∫ 5− 5y
2

0

∫ 2− 2z
5

0

f(x, y, z) dx dz dy.

6. (6 pt) Consider the surface defined by the equation 3x2 + xy3 − 2z2 = 28, and the point
P = (3, 1, 1) on this surface.
Find an equation for the tangent plane to S at P .

A correct solution is: Taking F (x, y, z) = 3x2 + xy3 − 2z2, we can think of the surface
as a level surface of F . Then ∇F (P ) is a normal vector to the tangent plane.

We have ∇F (x, y, z) =

6x+ y3

3xy2

−4z

 and ∇F (3, 1, 1) =

19
9
−4

. The equation of the tangent

plane to the surface can be calculated as ∇F (P )·

x− 3
y − 1
z − 1

 = 0, which leads to the equation
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19x+ 9y − 4z = 62.

It is possible to multiply both sides of this equation by a constant factor. This does not
affect the tangent plane it describes.

7. (4 pt) Given are the vector field F(x, y) = ⟨x2, 4x− 5y⟩ and the curve C with parametrization
r(t) = ⟨et, t2⟩ from (1, 0) to (e3, 9).

Our goal is to evaluate the line integral

∫
C
F · dr by writing it as an integral

∫ ub

lb

f(t) dt.

You do not need to evaluate the integral.
Give the integrand f(t), the lower limit lb and the upper limit ub.

A correct solution is: In general, a line integral can be evaluated as∫
C
F · dr =

∫ ub

lb

F(r(t)) · r′(t) dt.

Substituting x = et and y = t2 into ⟨x2, 4x− 5y⟩, we obtain the expression ⟨e2t,−5t2 + 4et⟩.
In addition, we can compute r′(t) = ⟨et, 2t⟩. So, we must have f(t) = ⟨e2t,−5t2 + 4et⟩ ·
⟨et, 2t⟩ = −10t2+8tet+ e3t. Finally, the point (1, 0) corresponds to t = 0, so lb = 0, while
the point (e3, 9) corresponds to t = 3, so ub = 3.
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Open questions (total: 40 points)
The next questions need to be worked out completely, every answer needs to be motivated.
Write the solution in the box. If necessary, there is extra space at the end of the exam. If
you use this extra space, clearly indicate the numbering of the questions there AND write in
the regular answer box that you use the extra space. The maximum points per question is
indicated in the margin.

8. (8 pt) Evaluate the double integral

∫∫
D
(6x2 + 4)(y + x3) dA, where D is the region bounded in

between the lines y + x3 = 1, y + x3 = 4, y − 2x = 1 and y − 2x = 4.

A correct solution is: We evaluate this double integral using the coordinate transfor-
mation {

u = y + x3

v = y − 2x

The region D transforms into the rectangle S = {(u, v) | 1 ≤ u ≤ 4, 1 ≤ y ≤ 4}. We can
compute the Jacobian as

∂(x, y)

∂(u, v)
=

1
∂(u,v)
∂(x,y)

=
1

∂u
∂x

∂v
∂y

− ∂u
∂y

∂v
∂x

=
1

3x2 · 1− 1 · (−2)
=

1

3x2 + 2

In particular, we obtain∫∫
D
(6x2 + 4)(y + x3) dA =

∫∫
S
(6x2 + 4)(y + x3)

1

3x2 + 2
du dv

=

∫ 4

1

∫ 4

1

2(y + x3) du dv =

∫ 4

1

∫ 4

0

2u du dv

=

∫ 4

1

15 dv = 45.

9. (12 pt) Let D be the region in R2 inside the triangle with vertices (−2,−1), (2, 3) and (2,−1).
Find the absolute minimum and absolute maximum of the function
f(x, y) = x3 − 12xy + 6y2 on D and the points at which these values occur.

A correct solution is: We aim to find all candidate points where the minimum and max-
imum might occur. By comparing the function values at these points, we obtain where
the minimum and maximum actually occur.

First, we find all critical points. For this we evaluate

fx(x, y) = 3x2 − 12y, fy(x, y) = −12x+ 12y

Setting fy(x, y) = 0 gives x = y. Plugging this into fx(x, y) = 0 gives 3x2 = 12x, so x = 0
or x = 4. As such, the critical points are (0, 0) and (4, 4). Of these, only (0, 0) lies inside
the region, so we discard (4, 4).

Now we analyse the boundaries of the region. First we consider the line y = −1,−2 ≤
x ≤ 2. Plugging y = −1 into f , gives the function f(x,−1) = x3 + 12x + 6. Computing
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d

dx
f(x,−1) = 3x2 + 12 = 0 yields no further solutions. So the only new candidates are

the corner points (−2,−1) and (2,−1).

Next, we consider the line x = 2,−1 ≤ y ≤ 3. Plugging x = 2 into f yields f(2, y) =

8 − 24y + 6y2. Computing
d

dy
f(2, y) = −24 + 12y gives y = 2. So the new candidate

points are (2, 2) and the corner point (2, 3).

Finally, we consider the line y = x + 1 for −2 ≤ x ≤ 2. Plugging y = x + 1 into f yields

f(x, x + 1) = x3 − 12x(x + 1) + 6(x + 1)2 = x3 − 6x2 + 6. Computing
d

dx
x3 − 6x2 + 6 =

3x2 − 12x = 0 gives x = 0 or x = 4. The point (4, 5) is outside the triangle, so we discard
it. Hence, the only new candidate point is (0, 1).

Now we have found all candidates. We evaluate f at each point to obtain:

f(0, 0) = 0, f(−2,−1) = −26, f(2,−1) = 38, f(2, 2) = −16, f(2, 3) = −10, f(0, 1) = 6

We can conclude that the absolute minimum of f is −26 at the point (−2,−1) and the
absolute maximum of f is 38 at (2,−1).

10. (6 + 6 pt) Let E be the solid region in R3 that lies below the cone z = −
√
3x2 + 3y2 and inside the

sphere x2 + y2 + (z + 1)2 = 1, and has x ≥ 0.

Write the triple integral

∫∫∫
E
x
√

x2 + y2 + z2 dV as an iterated integral in

(a.) cylindrical coordinates and

(b.) spherical coordinates.

In both cases, you do not need to evaluate the integral, i.e. you can leave your

answers in the form

∫ ...

...

∫ ...

...

∫ ...

...

..... d... d... d....

A correct solution is:
(a.) In cylindrical coordinates, it can be seen that, as seen from below, the variable z starts
at the sphere and ends at the cone. The cone can be written in cylindrical coordinates as

z = −
√

3x2 + 3y2 = −
√
3r2 = −r

√
3

For the sphere, we first rewrite it to

(z + 1)2 = 1− x2 − y2 = 1− r2

Taking the negative square root (since we are looking at the lower half of the sphere), we
find

z + 1 = −
√
1− r2 ⇒ z = −1−

√
1− r2

In particular, we find −1−
√
1− r2 ≤ z ≤ −r

√
3.

The lowest value of r occurs at the z-axis, where r = 0. The highest value of r occurs
when the sphere and the cone intersect. This happens when

1 = x2+y2+(z+1)2 = x2+y2+(−
√

3x2 + 3y2+1)2 = r2+(−
√
3r+1)2 = 4r2−2

√
3r+1,
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i.e. when r = 1
2

√
3 (since r > 0).

Finally, the condition x ≥ 0 means that −π
2
≤ θ ≤ π

2
. There are no further restrictions on

θ. In total, not forgetting the Jacobian r, we find∫∫∫
E
x
√

x2 + y2 + z2 dV =

∫ π
2

−π
2

∫ 1
2

√
3

0

∫ −r
√
3

−1−
√
1−r2

r cos(θ)
√
r2 + z2r dz dr dθ

=

∫ π
2

−π
2

∫ 1
2

√
3

0

∫ −r
√
3

−1−
√
1−r2

r2 cos(θ)
√
r2 + z2 dz dr dθ

(b.) In spherical coordinates the condition −π
2
≤ θ ≤ π

2
holds as well.

The cone can be written as

ρ cos(ϕ) = −
√
3(ρ sin(ϕ) cos(θ)2) + 3(ρ sin(ϕ) sin(θ))2 = −

√
3ρ2 sin2(ϕ)(cos2(θ) + sin2(θ)

= −
√
3ρ2 sin2(ϕ) = −ρ sin(ϕ)

√
3

where we use that sin(ϕ) ≥ 0, since 0 ≤ ϕ ≤ π. In particular, we obtain

cos(ϕ) = − sin(ϕ)
√
3,

which, for 0 ≤ ϕ ≤ π only holds for ϕ = 5π
6
. So ϕ starts at the cone, and ends at the

negative z-axis, so we find 5π
6
≤ ϕ ≤ π.

The sphere can be written out as x2 + y2 + z2 + 2z = 0, which in spherical coordinates
becomes

ρ2 + 2ρ cos(ϕ) = 0

So, this becomes ρ = −2 cos(ϕ). In particular, ρ starts at the origin (notice that the top
of the sphere is at the origin) and ends at the sphere, so we have 0 ≤ ρ ≤ −2 cos(ϕ).
In total, not forgetting the Jacobian ρ2 sin(ϕ), we find∫∫∫

E
x
√
x2 + y2 + z2 dV =

∫ π
2

−π
2

∫ π

5π
6

∫ −2 cos(ϕ)

0

ρ sin(ϕ) cos(θ)ρ · ρ2 sin(ϕ) dρ dϕ dθ

=

∫ π
2

−π
2

∫ π

5π
6

∫ −2 cos(ϕ)

0

ρ4 sin2(ϕ) cos(θ) dρ dϕ dθ

11. (8 pt) Consider the vector field F(x, y) = ⟨sin(x2)y + 2xy, x2⟩. Let C be the triangular curve
consisting of the line segment from (0, 0) to (1, 2), followed by the line segment from (1, 2)
to (1, 0), and the line segment from (1, 0) back to (0, 0).

Evaluate the line integral

∮
C
F · dr.

A correct solution is: We apply Green’s theorem. The region D inside C can be
described as

D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x}

page 9 of 10



Notice that C has a clockwise, i.e. negative, orientation with respect to D. Writing
P (x, y) = sin(x2)y + 2xy and Q(x, y) = x2, Green’s theorem gives∮

C
F · dr = −

∫∫
D

∂Q

∂x
− ∂P

∂y
dA = −

∫ 1

0

∫ 2x

0

(2x− (sin(x2) + 2x)) dy dx

=

∫ 1

0

∫ 2x

0

sin(x2) dy dx =

∫ 1

0

2x sin(x2) dx

=

∫ 1

0

sin(u) du = [− cos(u)]10 = − cos(1) + 1

where, in the final line, we used the substitution u = x2.

Grade =
obtained points

84
· 9 + 1

THE END
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