

Practice Exam 2 - EE1M1 Calculus

You are allowed to use:

- Pen, pencils and scrap paper.

The formula sheet can be found on the next page.

Formula sheet

Some trigonometric formulae

$$\sin(2\alpha) = 2 \sin(\alpha) \cos(\alpha)$$

$$\cos(2\alpha) = 2 \cos^2(\alpha) - 1 = 1 - 2 \sin^2(\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

Some limits

$$\lim_{x \rightarrow \infty} \frac{x^p}{e^x} = 0$$

$$\lim_{x \rightarrow \infty} \left(1 + \frac{a}{x}\right)^x = e^a$$

$$\lim_{x \rightarrow \infty} \frac{\ln x}{x^p} = 0 \quad (p > 0)$$

Some integrals

$$\int \frac{dx}{\sin(x)} = \ln \left| \tan \left(\frac{x}{2} \right) \right| + C$$

$$\int \frac{dx}{\cos(x)} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$

$$\int \frac{dx}{1+x^2} = \arctan(x) + C$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C = -\arccos(x) + C$$

$$\int \frac{dx}{\sqrt{x^2+1}} = \ln(x + \sqrt{x^2+1}) + C$$

$$\int \frac{dx}{\sqrt{x^2-1}} = \ln|x + \sqrt{x^2-1}| + C$$

$$\int \sqrt{1+x^2} dx = \frac{1}{2}x\sqrt{1+x^2} + \frac{1}{2}\ln(x + \sqrt{1+x^2}) + C$$

$$\int \sqrt{1-x^2} dx = \frac{1}{2}x\sqrt{1-x^2} + \frac{1}{2}\arcsin(x) + C$$

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \begin{cases} \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{3}{4} \frac{1}{2} \frac{\pi}{2} & \text{if } n \text{ even and } n \geq 2 \\ \frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{4}{5} \frac{2}{3} & \text{if } n \text{ odd and } n \geq 3 \end{cases}$$

Short-answer questions

An explanation is not required for the short-answer questions. Only the answer matters. You do not need to fully simplify your answers.

1. Is the vector field $\mathbf{F}(x, y, z) = \langle -2y \sin(2xy), -2x \sin(2xy), \cos(2xy) \rangle$ conservative? If it is conservative, give a potential function.

2. Consider the function $f(x, y) = e^{x-y}$. For which direction \mathbf{u} does $D_{\mathbf{u}}f(2, 2)$ reach its minimal value?

3. Let \mathcal{C} be the curve that first follows the straight line from $(1, 3)$ to $(-2, 4)$ and then the parabola $y = x^2$ to $(-3, 9)$ and consider the vector field $\mathbf{F} = \langle 2xy - y^2, x^2 - 2xy \rangle$. Evaluate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

4. Reverse the order of integration for $\int_{-4}^0 \int_3^{\sqrt{25-x^2}} f(x, y) dy dx$ and give the resulting integral.

5. Consider the function $f(x, y) = x^2y + x^2 + 2y^2 - 3$. Give the coordinates of all critical points of f that correspond to local minima, local maxima and saddle points (if they exist).

Local Minima:

Local maxima:

Saddle points:

6. A charge density $q(x, y, z)$ is distributed over the region E in between the cone $z = 3\sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 4$. Express the net total charge as a triple integral in cylindrical coordinates.

7. Consider a lamina on a bounded region \mathcal{D} with constant density K and total mass m and let \bar{x} denote the x -coordinate of the center of mass of the lamina. Let \mathcal{C} denote the boundary curve of \mathcal{D} . Find a vector field \mathbf{F} for which $\bar{x} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

Open questions

The next questions need to be worked out completely, every answer needs to be reasoned.

8. Let D be the triangle with vertices $(-1, 0)$, $(1, 1)$ and $(1, -1)$. Find the absolute minimum and absolute maximum of the function $f(xy) = 2x^2 - 3xy$ on D .

9. Consider the coordinate transformation $\begin{cases} u &= \sqrt{x-y} \\ v &= \sqrt{x+y} \end{cases}$. Let \mathcal{D} be the region enclosed by the lines $y = 1 - x$, $y = 4 - x$, $y = x - 1$ and $y = x - 4$. Express and evaluate the integral $\iint_{\mathcal{D}} e^{x+y} dA$ using uv -coordinates. If needed, you may use that $\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{\frac{\partial(u, v)}{\partial(x, y)}}$.

10. Consider the function $f(x, y)$ with the property that $f(-x, y) = -f(x, y)$. We are given that $\iint_{\mathcal{D}} (3 + 2f(x, y)) dA = 8$. Furthermore, $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$, where \mathcal{D}_1 and \mathcal{D}_2 are non-overlapping regions each with surface area equal to 2. Also, the region \mathcal{D}_1 is symmetric with respect to reflection in the y -axis. Evaluate the integral $\iint_{\mathcal{D}_2} f(x, y) dA$.

11. Let \mathcal{E} be the region in between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$. Evaluate $\iiint_{\mathcal{E}} (x^2 + y^2) \, dV$.

THE END