
Het nieuwe TU-logo is omgeven door een witte rand:

De volgende boundingbox moet meegegeven worden om deze witte rand te
laten verdwijnen:

De witte rand wordt nu nog wel ”geprint”. Door ”clip” mee te geven gebeurt
dit niet.

Om mezelf te overtuigen: vergelijk de volgende twee.

ook de tekst kan verwijdert worden:

Practice Exam 2 - EE1M1 Calculus

You are allowed to use:
• Pen, pencils and scrap paper.

The formula sheet can be found on the next page.
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Formula sheet

Some trigonometric formulae

sin(2α) = 2 sin(α) cos(α)
cos(2α) = 2 cos2(α)− 1 = 1− 2 sin2(α) = cos2(α)− sin2(α)

Some limits

lim
x→∞

xp

ex
= 0

lim
x→∞

(
1 +

a

x

)x

= ea

lim
x→∞

lnx

xp
= 0 (p > 0)

Some integrals∫
dx

sin(x)
= ln

∣∣∣tan(x
2

)∣∣∣+ C∫
dx

cos(x)
= ln

∣∣∣tan(x
2
+

π

4

)∣∣∣+ C∫
dx

1 + x2
= arctan(x) + C∫

dx

1− x2
=

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ C∫
dx√
1− x2

= arcsin(x) + C = − arccos(x) + C∫
dx√
x2 + 1

= ln
(
x+

√
x2 + 1

)
+ C∫

dx√
x2 − 1

= ln
∣∣x+

√
x2 − 1

∣∣+ C∫ √
1 + x2 dx =

1

2
x
√
1 + x2 +

1

2
ln
(
x+

√
1 + x2

)
+ C∫ √

1− x2 dx =
1

2
x
√
1− x2 +

1

2
arcsin(x) + C

∫ π
2

0

sinn x dx =


n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 3

4

1

2

π

2
if n even and n ≥ 2

n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 4

5

2

3
if n odd and n ≥ 3
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Short-answer questions
An explanation is not required for the short-answer questions. Only the answer matters. You
do not need to fully simplify your answers.

1. Is the vector field F(x, y, z) = ⟨−2y sin(2xy),−2x sin(2xy), cos(2xy)⟩ conservative? If it is
conservative, give a potential function.

A correct solution is: If ϕ were a potential for F, then, since
∂ϕ

∂x
= −2y sin(2xy), we

should have ϕ = cos(2xy) + h(y, z), where h is a function of only y and z. However,

since
∂ϕ

∂z
= cos(2xy), we should have

∂h

∂z
= cos(2xy), which is impossible since h does not

depend on x. So F is not conservative.

2. Consider the function f(x, y) = ex−y. For which direction u does Duf(2, 2) reach its
minimal value?
A correct solution is: The directional derivative takes its minimal value in the direction
of −∇f(2, 2). Since ∇f = ⟨ex−y,−ex−y⟩, we find −∇f(2, 2) = ⟨−1, 1⟩. Since u should be

a unit vector, we find that u =
−∇f(2, 2)

∥∇f(2, 2)∥
=

〈
−1

2

√
2, 1

2

√
2
〉
.

3. Let C be the curve that first follows the straight line from (1, 3) to (−2, 4) and then
the parabola y = x2 to (−3, 9) and consider the vector field F = ⟨2xy − y2, x2 − 2xy⟩.
Evaluate the line integral

∫
C
F · dr.

A correct solution is: The vector field F is conservative, since ϕ = x2y − xy2 is a
potential function. Hence, the fundamental theorem for line integrals allows us to directly
evaluate the line integral by evaluating the potential at the start and end point of the
curve (the integral can also be evaluated by parametrizing the curve, but that is more
work). This gives ∫

C
F · dr = ϕ(−3, 9)− ϕ(1, 3) = 330.

4. Reverse the order of integration for

∫ 0

−4

∫ √
25−x2

3

f(x, y) dy dx and give the resulting inte-

gral.
A correct solution is: The region of integration is {(x, y) | − 4 ≤ x ≤ 0, 3 ≤ y ≤√
25− x2}, i.e. the part of the circle centered around the origin with radius 5 with

y ≥ 3 and x ≤ 0. Reversing the order of integration, we find

∫ 0

−4

∫ √
25−x2

3

f(x, y) dy dx =∫ 5

3

∫ 0

−
√

25−y2
f(x, y) dx dy.

5. Consider the function f(x, y) = x2y + x2 + 2y2 − 3. Give the coordinates of all critical
points of f that correspond to local minima, local maxima and saddle points (if they
exist).
A correct solution is: The partial derivatives of f are given by fx = 2x(y + 1) and
fy = x2 + 4y. Since the partial derivatives are defined everywhere, we only need to
consider points where both partial derivatives are 0. Solving fx = 0 yields x = 0 or
y = −1. The system x = 0, fy = 0 gives y = 0, while the system y = −1, fy = 0 gives
x = 2 or x = −2. So f has three critical points (0, 0), (2,−1) and (−2,−1). The second
order partial derivatives are given by fxx = 2(y + 1), fxy = fyx = 2x and fyy = 4. So
the discriminant D satisfies D(0, 0) = 8, D(2,−1) = −16 and D(−2,−1) = 16. Since
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fxx(0, 0) > 0, we find that f has a local minimum at (0, 0), while (2,−1) and (−2,−1) are
saddle points.

6. A charge density q(x, y, z) is distributed over the region E in between the cone z =
3
√

x2 + y2 and the sphere x2 + y2 + z2 = 4. Express the net total charge as a triple
integral in cylindrical coordinates.
A correct solution is: In cylindrical coordinates, the cone is given by z = 3r, while the
sphere is given by r2+z2 = 4. Since the sphere is above the cone, we can take the positive
square root to find z =

√
4− r2. The sphere and the cone intersect when 3r =

√
4− r2,

i.e. when r =
√

2
5
. Finally, the region is rotationally symmetric around the z-axis. We

find that the total charge Q satisfies

Q =

∫ 2π

0

∫ √
2
5

0

∫ √
4−r2

3r

q(r cos(θ), r sin(θ), z)r dz dr dθ.

7. Consider a lamina on a bounded region D with constant density K and total mass m
and let x denote the x-coordinate of the center of mass of the lamina. Let C denote the

boundary curve of D. Find a vector field F for which x =

∫
C
F · dr.

A correct solution is: The x-coordinate of the center of mass is given by the double
integral

x =

∫∫
D
K

x

m
dA.

According to Green’s theorem, we have for any vector field F = ⟨P,Q⟩ that∫
C
F · dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

So we need to find a vector field for which
(

∂Q
∂x

− ∂P
∂y

)
= K x

m
. There are many vector

fields with this property, including F =
〈
0, K x2

2m

〉
and F =

〈
−K xy

m
, 0
〉
and any of these

will suffice.

Open questions
The next questions need to be worked out completely, every answer needs to be reasoned.

8. Let D be the triangle with vertices (−1, 0), (1, 1) and (1,−1). Find the absolute minimum
and absolute maximum of the function f(x, y) = 2x2 − 3xy on D.
A correct solution is: The partial derivative of f are given by fx = 4x − 3y and
fy = −3x. Solving fy = 0 yields y = 0 and plugging this into the equation fx = 0 gives
that (0, 0) is the only critical point of f . Moreover, we have f(0, 0) = 0.

In order to find the other candidate locations for the absolute maximum and minimum,
we evaluate f at the boundaries of the region. First we consider the line piece from (−1, 0)
to (1, 1), i.e. y = x

2
+ 1

2
. We compute f

(
x, x

2
+ 1

2

)
= x2

2
− 3x

2
. This function has a local

minimum at x = 3
2
, which is outside the region under consideration. Now we consider the

line piece from (−1, 0) to (1,−1), i.e. y = −x
2
− 1

2
. We compute f

(
x,−x

2
− 1

2

)
= 7x2

2
+ 3x

2
.

This function has a local minimum at x = − 3
14
, which corresponds to y = −17

28
, and we

have f
(−3
14
,−17

28

)
= − 9

56
. Finally, we consider the line piece from (1,−1) to (1, 1), i.e.

x = 1. We compute f(1, y) = 2− 3y, which does not have any local minima or maxima.
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To conclude we consider the edge points of the region and compute the function values
there: f(−1, 0) = 2, f(1, 1) = −1 and f(1,−1) = 5.

Since these are all the candidates for the locations of the absolute minimum and the abso-
lute maximum, the largest function value corresponds to the absolute maximum and the
smallest function value corresponds to the absolute minimum. We find that the absolute
minimum is −1 at (1, 1) and the absolute maximum is 5 at (1,−1).

9. Consider the coordinate transformation

{
u =

√
x− y

v =
√
x+ y

. Let D be the region enclosed

by the lines y = 1−x, y = 4−x, y = x−1 and y = x−4. Express and evaluate the integral∫∫
D
ex+y dA using uv-coordinates. If needed, you may use that

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

.

A correct solution is: We note that u2 = x− y and v2 = x+ y, so that x = 1
2
(u2 + v2)

and y = 1
2
(v2 − u2). Using these, we can compute

∂(x, y)

∂(u, v)
=

∣∣∣∣ u v
−u v

∣∣∣∣ = 2uv.

In uv-coordinates, the limit y = 1− x, y = 4− x, y = x− 1 and y = x− 4 transform into
v2 = 1, v2 = 4, u2 = 1 and u2 = 4 respectively. Since u and v are positive, we obtain the
limits 1 ≤ u ≤ 2 and 1 ≤ v ≤ 2. We conclude that∫∫

D
ex+y dA =

∫ 2

1

∫ 2

1

2uvev
2

dv du =
3

2

(
e4 − e

)
.

10. Consider the function f(x, y) with the property that f(−x, y) = −f(x, y). We are given

that

∫∫
D
(3 + 2f(x, y)) dA = 8. Furthermore, D = D1 ∪ D2, where D1 and D2 are non-

overlapping regions each with surface area equal to 2. Also, the region D1 is symmetric

with respect to reflection in the y-axis. Evaluate the integral

∫∫
D2

f(x, y) dA.

A correct solution is: Since the double integral of the constant function 1, is the area
of integration, we find that ∫∫

D
3 dA = 3Area(D) = 12,

so that

∫∫
D
2f(x, y) dA = 8 − 12 = −4, which yields that

∫∫
D
f(x, y) dA = −2. Since

f(−x, y) = −f(x, y) and D1 is symmetric with respect to reflection in the y-axis, we find
that the part integrating f over the part of D1 to the left of the y-axis cancels out the

integral over the part of D1 to the right of the y-axis, so

∫∫
D1

f(x, y) dA = 0. We conclude

that

∫∫
D2

f(x, y) dA = −2.

11. Let E be the region in between the spheres x2+y2+z2 = 1 and x2+y2+z2 = 4. Evaluate∫∫∫
E
(x2 + y2) dV .

A correct solution is: We evaluate the integral in spherical coordinates. The spheres
turn into the equations ρ = 1 and ρ = 2 respectively. Since the region E is rotationally

page 5 of 6



symmetric in all directions, the limits of the integral become 1 ≤ ρ ≤ 2, 0 ≤ ϕ ≤ π and
0 ≤ θ ≤ 2π. Finally, the integrand x2 + y2 becomes ρ2 sin2(ϕ). Upon multiplying by the
Jacobian ρ2 sin(ϕ), we obtain

∫∫∫
E(x

2 + y2) dV =

∫ 2π

0

∫ π

0

∫ 2

1

ρ4 sin3(ϕ) dρdϕdθ

=

∫ 2π

0

∫ π

0

∫ 2

1

ρ4 sin(ϕ)(1− cos2(ϕ)) dρdϕdθ

=

∫ 2π

0

∫ π

0

31

5
sin(ϕ)(1− cos2(ϕ)) dϕdθ

=

∫ 2π

0

∫ −1

1

−31

5
(1− u2) dudθ

=

∫ 2π

0

124

15
dθ

=
248

15
π.

In this computation we used the substitution u = cos(ϕ).

THE END
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