
Het nieuwe TU-logo is omgeven door een witte rand:

De volgende boundingbox moet meegegeven worden om deze witte rand te
laten verdwijnen:

De witte rand wordt nu nog wel ”geprint”. Door ”clip” mee te geven gebeurt
dit niet.

Om mezelf te overtuigen: vergelijk de volgende twee.

ook de tekst kan verwijdert worden:

Practice Exam 1 - Solutions - EE1M1 Calculus

You are allowed to use:
• Pen, pencils and scrap paper.

The formula sheet can be found on the next page.
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Formula sheet

Some trigonometric formulae

sin(2α) = 2 sin(α) cos(α)
cos(2α) = 2 cos2(α)− 1 = 1− 2 sin2(α) = cos2(α)− sin2(α)

Some limits

lim
x→∞

xp

ex
= 0

lim
x→∞

(
1 +

a

x

)x

= ea

lim
x→∞

lnx

xp
= 0 (p > 0)

Some integrals∫
dx

sin(x)
= ln

∣∣∣tan(x
2

)∣∣∣+ C∫
dx

cos(x)
= ln

∣∣∣tan(x
2
+

π

4

)∣∣∣+ C∫
dx

1 + x2
= arctan(x) + C∫

dx

1− x2
=

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ C∫
dx√
1− x2

= arcsin(x) + C = − arccos(x) + C∫
dx√
x2 + 1

= ln
(
x+

√
x2 + 1

)
+ C∫

dx√
x2 − 1

= ln
∣∣x+

√
x2 − 1

∣∣+ C∫ √
1 + x2 dx =

1

2
x
√
1 + x2 +

1

2
ln
(
x+

√
1 + x2

)
+ C∫ √

1− x2 dx =
1

2
x
√
1− x2 +

1

2
arcsin(x) + C

∫ π
2

0

sinn x dx =


n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 3

4

1

2

π

2
if n even and n ≥ 2

n− 1

n

n− 3

n− 2

n− 5

n− 4
· · · 4

5

2

3
if n odd and n ≥ 3
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Short-answer questions
An explanation is not required for the short-answer questions. Only the answer matters. You
do not need to fully simplify your answers.

1. Find all horizontal and vertical asymptotes of the function f(x) =
(x− 5)

√
x2 + 1 + 2x− 10

x2 − 2x− 15
.

A correct solution is: We first simplify the function by dividing out the common factor

x − 5, which gives f(x) =

√
x2 + 1 + 2

x+ 3
. At x = −3, the denominator is zero, while the

numerator is nonzero, so f has a vertical asymptote at x = −3. By applying the square

root trick we can write f(x) =
3− x2

(x+ 3)(2−
√
x2 + 1)

. We can now comput by dividing by

the dominant term x2 and taking this inside the square root

lim
x→∞

f(x) = lim
x→∞

3
x2 − 1

2
x
+ 6

x2 −
√

1 + 1
x2 − 3

x

√
1 + 1

x2

= 1.

For the limit as x → −∞, we also divide by x2, but in order to take this term inside the
square root, we have to use that 1

x
= − 1

−x
= − 1√

x2
since x is negative. This yields

lim
x→−∞

f(x) = lim
x→−∞

3
x2 − 1

2
x
+ 6

x2 +
√

1 + 1
x2 +

3
x

√
1 + 1

x2

= −1.

So f has a vertical asymptote at x = −3 and horizonatal asymptotes at y = 1 and y = −1.

2. Consider f(x) =
√
x. Give the sharpest upper bound for the Lagrange remainder when

approximating
√
16.02 using a Taylor polynomial of degree 3 with center 16.

A correct solution is: In order to bound the Lagrange remainder, we evaluate

f (4)(x) = − 15

16x
7
2

For s in between 16 and 16.02, the value |f (4)(s)| is maximal when s = 16, in which case
|f (4)(16)| = 15

262144
. As such, the Lagrange remainder E3 can be bounded by

E3 ≤
1

4!

15

262144
|16.02− 16|4 = 1

2621440000000

3. Evaluate the integral ∫
arcsin(2x) dx.

A correct solution is: We use integration by parts to obtain∫
arcsin(2x) dx =

∫
1 · arcsin(2x) dx

= x arcsin(2x)−
∫

x
2√

1− 4x2
dx
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For the final integral, we use the substitution u = 1− 4x2. With du = −8xdx, we obtain∫
arcsin(2x) dx = x arcsin(2x)−

∫
x

2√
1− 4x2

dx

= x arcsin(2x)−
∫

−1

4
√
u
dx

= x arcsin(2x) +
1

2

√
u+ C

= x arcsin(2x) +
1

2

√
1− 4x2 + C

4. Find an equation of the tangent line to the curve

x3 − cos

(
2πx

y

)
= yx2 + 3

at the point (2, 1).

A correct solution is: We differentiate this equation implicitly to obtain

3x2 + sin

(
2πx

y

)(
2π

y
− 2πx

y2
dy

dx

)
= x2 dy

dx
+ 2xy.

In this we can plug in x = 2 and y = 1 to obtain

12 + sin(4π)(2π − 4π
dy

dx
) = 4

dy

dx
+ 4,

which implies

12 = 4
dy

dx
+ 4.

This means that dy
dx

at (x, y) = (2, 1) equals 2. Therefore, the equation of the tangent line
is given by

y − 1 = 2(x− 2) or y = 2x− 3.

5. Recall that the equation of an ellipse with semi-major axis a > 0 and semi-minor axis
b > 0 is given by x2

a2
+ y2

b2
= 1. Find f(x, y) if each level curve f(x, y) = C is an ellipse

centered at the origin with

(a) semi-major axis
√
2C and semi-minor axis

√
C;

(b) semi-major axis and semi-minor axis both equal to
√

ln(2C);

(c) semi-major axis C and semi-minor axis
√
C.

A correct solution is:

(a) We can rewrite the equation x2

2C
+ y2

C
= 1 to x2

2
+y2 = C, which yields f(x, y) = x2

2
+y2.

(b) We can rewrite the equation x2

ln(2C)
+ y2

ln(2C)
= 1 to x2 + y2 = ln(2C), from which we

deduce 2C = ex
2+y2 , which yields f(x, y) = 1

2
ex

2+y2 .

(c) We can rewrite the equation x2

C2 + y2

C
= 1 to x2 + y2C = C2, which we can solve for

C to obtain C = 1
2
(y2 −

√
4x2 + y4) or C = 1

2
(y2 +

√
4x2 + y4). However, in the first

case C will always turn out negative, which is not possible since C is the semi-major
axis and therefore nonnegative. As such, f(x, y) = 1

2
(y2 +

√
4x2 + y4).

page 4 of 7



6. Evaluate the limit

lim
x→0+

ln(sin(x))

e
1
x

A correct solution is: Since both the numerator and the denominator of the fraction
approach either ∞ or −∞ as x → 0+, we can apply l’Hospital’s rule. This yields

lim
x→0+

ln(sin(x))

e
1
x

= lim
x→0+

cos(x)
sin(x)

− 1
x2 e

1
x

= lim
x→0+

− cos(x)x2

sin(x)

e
1
x

.

Now, either using a standard limit or again using l’Hospital’s rule, we find lim
x→0+

x

sin(x)
= 1.

This means that lim
x→0+

− cos(x)x2

sin(x)
= 0. Since the denominator e

1
x approaches∞ as x → 0+,

we find that

lim
x→0+

ln(sin(x))

e
1
x

= lim
x→0+

− cos(x)x2

sin(x)

e
1
x

= 0.

7. Find the area of the triangle with vertices (3, 1, 2), (1, 2, 2) and (4, 0, 0).

A correct solution is: The triangle is spanned by the vectors u = ⟨−2, 1, 0⟩ and
v = ⟨1,−1,−2⟩, i.e. the vectors from (3, 1, 2) to (1, 2, 2) and from (3, 1, 2) to (4, 0, 0)
respectively. The norm ||u×v|| represents the area of the parallelogram spanned by u and
v, so 1

2
||u×v|| represents the area of the given triangle. By computing u×v = ⟨−2,−4, 1⟩,

we find that the area is given by 1
2
||u× v|| = 1

2

√
(−2)2 + (−4)2 + 12 = 1

2

√
21.

8. Consider the function f(x) = 2x2− 4x+6 with domain (−∞, 0], which is invertible. Give
the inverse function. Also give the domain of this inverse.
A correct solution is: We write

y = 2x2 − 4x+ 6

and solve for x, which gives

x = 1±
√
y − 4√
2

Since the domain of f is (−∞, 1], and the domain of f is the range of f−1, we should take

the negative square root. Indeed, we find that f−1(x) = 1 −
√
x−4√
2
. The domain of f−1

equals the range of f . Clearly lim
x→−∞

f(x) = ∞. Moreover, f is decreasing on its domain.

So the range of f is [f(0),∞) = [6,∞), which must therefore also be the domain of f−1.

Open questions
The next questions need to be worked out completely, every answer needs to be reasoned.

9. Consider a function f(x, y) which satisfies f(1, 2) = 4. Suppose a normal to the tangent
plane of f at the point (x, y) = (1, 2) is given by the vector ⟨4,−6,−2⟩. What are fx(1, 2)
and fy(1, 2)?
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A correct solution is: On the one hand, an equation for the tangent plane is given by

z = 4 + fx(1, 2)(x− 1) + fy(1, 2)(y − 2),

while, using the normal, we find that an equation for the tangent plane is given by

4(x− 1)− 6(y − 2)− 2(z − 4) = 0,

i.e. 2z = 8 + 4(x − 1) − 6(y − 2). We can divide this equation by 2 to obtain z =
4+2(x− 1)− 3(y− 2). Now we have two equations for the same tangent plane, so we can
read off that fx(1, 2) = 2 and fy(1, 2) = −3.

10. Evaluate the integral

∫
1

ex + 3 + 2e−x
dx.

A correct solution is: We will first multiply both the numerator and the denominator
by ex. Then we use the substitution u = ex with du = exdx. This yields∫

1

ex + 3 + 2e−x
dx =

∫
ex

e2x + 3ex + 2
dx =

∫
1

u2 + 3u+ 2
du.

Since u2 + 3u+ 2 = (u+ 2)(u+ 1) we use partial fraction decomposition. This gives∫
1

u2 + 3u+ 2
du =

∫
1

u+ 1
− 1

u+ 2
du = ln(|u+ 1|)− ln(|u+ 2|) + C.

Plugging back in u = ex we find∫
1

ex + 3 + 2e−x
dx = ln(ex + 1)− ln(ex + 2) + C.

11. Find all points on the surface with equation z = x2 − 4xy2 +2xy where the tangent plane
is parallel to the plane z = 2x− 12y + 3.

A correct solution is: We first compute the equation for the tangent plane at an
arbitrary point (x0, y0). The partial derivatives are given by

∂

∂x
[x2 − 4xy2 + 2xy] = 2x− 4y2 + 2y,

∂

∂y
[x2 − 4xy2 + 2xy] = −8xy + 2x.

At (x0, y0) the tangent plane is given by the equation

z = x2
0 − 4x0y

2
0 + 2x0y0 + (2x0 − 4y20 + 2y0)(x− x0) + (−8x0y0 + 2x0)(y − y0).

Recall that two parallel planes have the same normal vectors. The tangent plane has
normal vector ⟨−(2x0 − 4y20 + 2y0),−(−8x0y0 + 2x0), 1⟩, while the plane z = 2x− 12y+3
has normal vector ⟨−2, 12, 1⟩. For the tangent plane to be parallel to z = 2x − 12y + 3,
we need to solve the system {

2x0 − 4y20 + 2y0 = 2,
−8x0y0 + 2x0 = −12.

From the first equation we can derive x0 = 1 + 2y20 − y0. Substituting this in the second
equation yields −16y30 + 12y20 − 10y0 + 14 = 0. y0 = 1 can easily seen to be a solution of
this. Performing a long division, we obtain the solution y0 = 1 or −16y20 − 4y0 − 14 = 0,
of which the latter equation does not have a solution. Hence, we find x0 = 2, which yields
that (2, 1) is the only point at which the tangent plane is parallel to z = 2x− 12y + 3.
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12. Determine whether the following integral is convergent or divergent. If the integral con-
verges, you do not need to evaluate it.

∞∫
0

1

2x
1
3 + 3x3

dx.

A correct solution is: This integral is improper of both type 1 and type 2, so we split
the integral as

∞∫
0

1

2x
1
3 + 3x3

dx =

1∫
0

1

2x
1
3 + 3x3

dx+

∞∫
1

1

2x
1
3 + 3x3

dx.

For the first integral, we note that 1

2x
1
3+3x3

≤ 1

2x
1
3
for 0 < x < 1. Since the integral

1∫
0

1

2x
1
3
dx converges, the integral

1∫
0

1

2x
1
3+3x3

dx converges as well. For the second integral,

we note that 1

2x
1
3+3x3

≤ 1
3x3 for x > 1. Since the integral

∞∫
1

1
3x3 dx converges, the integral

∞∫
1

1

2x
1
3+3x3

dx converges as well. Therefore, the improper integral converges.

13. Simplify arccos(2x) + arcsin(2x) into an expression that does not involve trigonometric
functions or their inverses.

A correct solution is: Consider the function f(x) = arccos(2x) + arcsin(2x). Then we
can compute

f ′(x) = − 2√
1− 4x2

+
2√

1− 4x2
= 0.

This means that the function f is constant, since its derivative is 0. In order to determine
which constant, we plug in any value of x for which we can compute f(x) by hand. In
this case, x = 0 will do nicely. In particular, we find that

arccos(2x) + arcsin(2x) = f(x) = f(0) = arccos(0) + arcsin(0) =
π

2
+ 0 =

π

2

for any value of x for which the expression is defined.

THE END
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