

EE1C1 “Linear Circuits A”

Week 1.6

Francesco Fioranelli / Ioan E. Lager

Today

- Recapitulation of weeks 1.1–1.4
- Op-amps
 - definition, operation
 - ideal op-amps (nonideal op-amps)
 - typical circuits
- Summary and conclusions
- Next tasks

Join today's Vevox session

- Please open the session **158-351-038**
- You will have **30 seconds** for each question
- This session is fully anonymous
- **Thank you for actively participating in the lecture!**

Recap of weeks 1.1–1.4

- We have a full battery of tools:
 - Ohm's law & Kirchhoff's laws
 - Nodal/mesh analysis
 - Superposition
 - Source transformation
 - Thévenin/Norton theorems
 - Inspection (practice makes perfect)

Recap of weeks 1.1–1.4

- We know how to analyse:
 - circuits consisting of sources & resistances
- We do not know how to analyse:
 - circuits with other than proportional $i(t) \leftrightarrow v(t)$ mappings (capacitances, inductances)
 - simple/complex transients, steady-state sinusoidal regime

Operational amplifiers (op-amps)

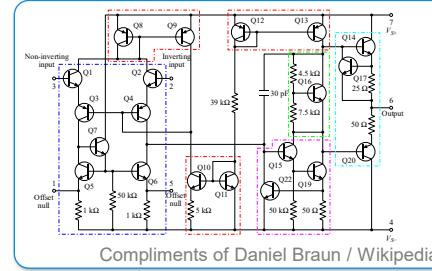
Passive and active electrical elements

- **Passive elements (do not inject power)**
 - resistances (resistors)
 - capacitances (capacitors)
 - inductances (inductors)
- **Active elements (inject power)**
 - (in)dependent sources (batteries, mains, etc.)
 - operational amplifiers

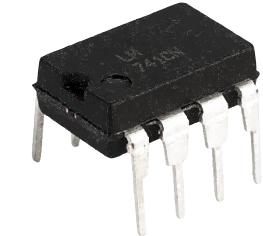
Today!

Op-amps: basics

- Stands for “operational amplifier”
- Main purposes:
 - voltage-controlled voltage source (standard amplifiers)
 - in combination with other elements, it is at the core of other dependent sources
 - in combination with other elements, it can perform mathematical operations on analog signals (addition, subtraction, multiplication, differentiation, and integration)



Compliments of Daniel Braun / Wikipedia

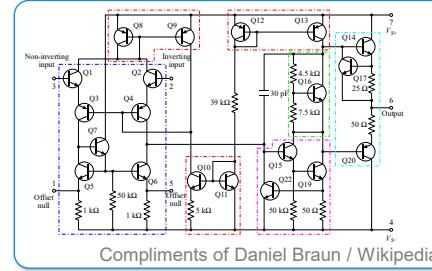
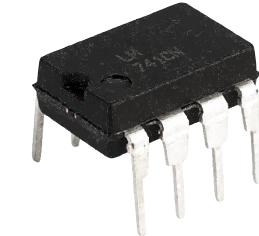


1968, David Fullagar

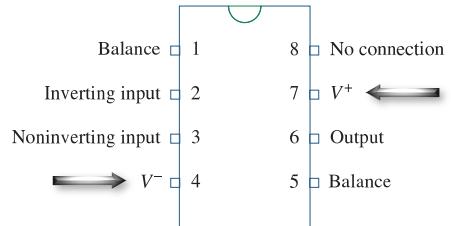
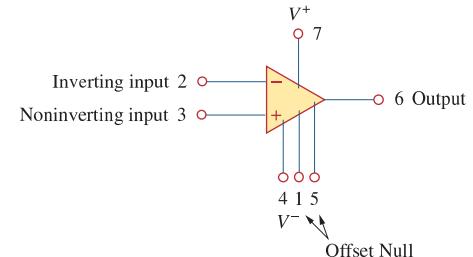
Op-amps: basics

Main connexions:

1. The inverting input
(indicated by a **minus** “**–**”)
2. The noninverting input
(indicated by a **plus** “**+**”)
3. The output
4. The positive and negative power supplies



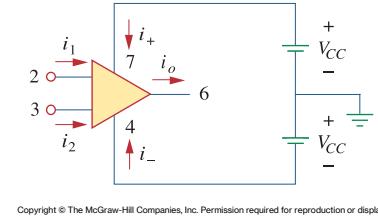
1968, David Fullagar



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Op-amps: powering

- As an active element, the op-amp requires a **power source**
- In (our) circuit diagrams, the power supply terminals are often obscured (it is taken for granted that they must be connected)
- Most op-amps use two voltage sources, with a ground reference between them → this requires a positive and negative supply voltage



Op-amps: amplification (gain)

- The voltage output of an op-amp is proportional to the **difference** between the noninverting and inverting inputs:

$$v_0 = Av_d = A(v_2 - v_1)$$

- here, A is denoted as the **open loop gain**
- ideally it is infinite**
- in real devices, it is finite, but **very large**: 10^5 to 10^8 volts/volt

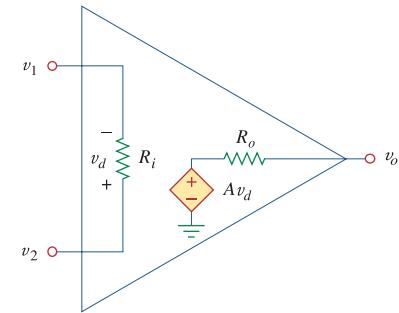


TABLE 5.1

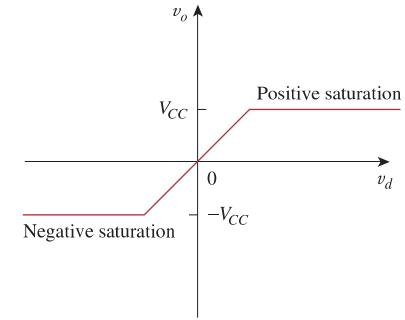
Typical ranges for op amp parameters.

Parameter	Typical range	Ideal values
Open-loop gain, A	10^5 to 10^8	∞
Input resistance, R_i	10^5 to $10^{13} \Omega$	$\infty \Omega$
Output resistance, R_o	10 to 100Ω	0Ω
Supply voltage, V_{CC}	5 to 24 V	

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Op-amps: voltage saturation

- Ideally (for an ideal source), the output voltage would be unlimited
- In reality, the output cannot exceed the supply voltage
- When output should exceed the possible voltage range, the output remains at either the maximum or minimum supply voltage → saturation
- Outputs between these limiting voltages are referred to as the linear region



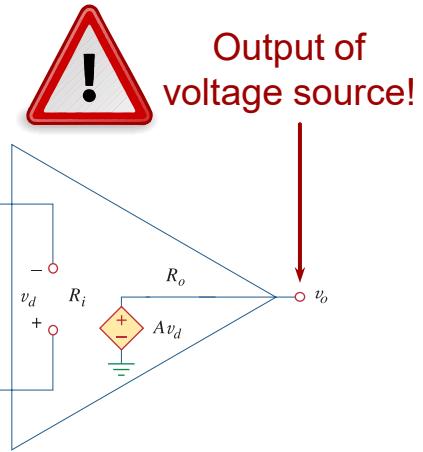
Recall:

$$v_0 = A v_d = A (v_2 - v_1)$$

(Non)ideal op-amps: analysis

Op-amps: ideal op-amps

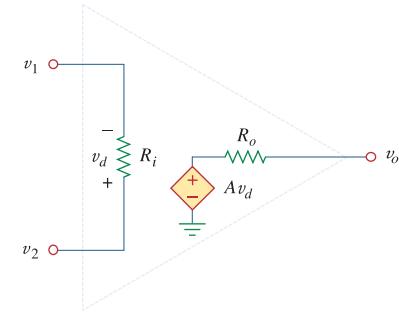
- Parameters of the ideal op-amp:
 - an infinite open-loop gain A ($A \rightarrow \infty$)
 - input resistance between the inputs R_i is infinite ($R_i \rightarrow \infty$) → the op-amp absorbs no current and, thus, the voltage of any node attached to the input will not be affected
 - zero output resistance R_o
- Many modern op-amp come close to these ideal values:
 - very large gains, larger than 10^6
 - input resistances are often in the range $10^9 \Omega$ to $10^{12} \Omega$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Op-amps: nonideal op-amps

- Nonideal op-amps?
- They must be accounted for via their equivalent circuit:
 - use the given input R_i , and output R_o resistances
 - use the given amplification A
 - examine the complete circuit with these parameters (quite likely, via nodal analysis)



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Op-amps: feedback

- The op-amp voltage output: $v_0 = Av_d = A(v_2 - v_1)$
- Ideal op-amp $A \rightarrow \infty$:

— $v_2 - v_1 = \text{finite} \rightarrow v_o \rightarrow \infty$

— $v_2 - v_1 \searrow 0 \rightarrow v_o \searrow 0$, or $v_o = \text{finite}$, or $v_o \rightarrow \infty$

- The open-loop operation of an op-amp is unstable!
- Solution: feedback → a part of the output is fed back
- into the inverting input = negative feedback → stable amplification
- into the noninverting input = positive feedback → stable oscillation

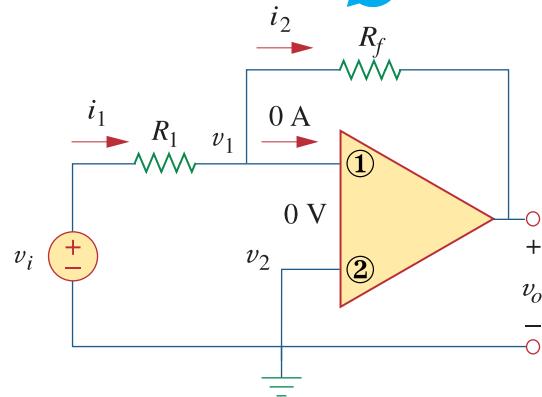
not handled in this course

Op-amps: feedback

Consider the circuit at the right.

- By knowing that the circuit makes use of negative feedback, indicate which of the two terminals is the positive (noninverting) input?

- a) Input 1
- b) Input 2
- c) I cannot indicate



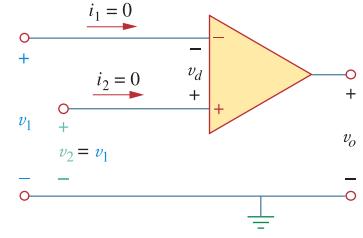
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Op-amps: zero conditions

- If the op-amp is ideal, the current into the input terminals is zero: $i_1 = 0, i_2 = 0$
- If, and only if, there is also feedback, the voltage across the input terminals is equal to zero: $\underbrace{v_1 = v_2}$
properties applicable to
- Textbook: Two important ~~characteristics~~ of the ideal op-amp are:

$$i_1 = 0, i_2 = 0$$
$$v_1 = v_2$$

zero conditions
“golden” conditions

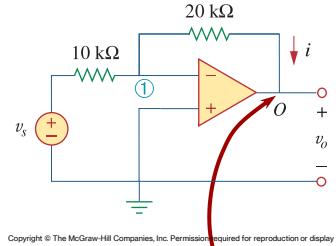


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Let's check!

Consider the circuit at the right, in which the op-amp is an **ideal one**.

- By knowing that $v_s = 2V$, determine:
 - the output voltage v_o
 - the current i
- *Hint:* apply the zero conditions at the node ①
- **Solution:** $v_o = -4V$ and $i = 0.2mA$

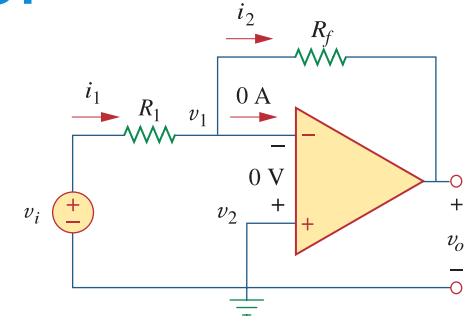


Never @ output!

Typical op-amp circuits

Typical circuits: inverting amplifier

- **Topology:**
 - the noninverting input is grounded
 - the inverting input is connected via a feedback resistance R_f to the output
 - the input voltage v_i is applied via a resistance R_1 to the inverting input
- The op-amp is taken to be ideal



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

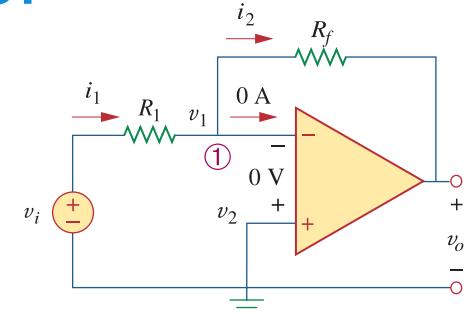
Typical circuits: inverting amplifier

- **Analysis:**

1. Apply KCL at node ①: $i_1 = i_2$
2. The voltage across the input terminals is zero: $v_1 = v_2 = 0$

3. Substituting yields: $\frac{v_i - v_1}{R_1} = \frac{v_1 - v_o}{R_f}$

- **Final result:** $\frac{v_i}{R_1} = -\frac{v_o}{R_f} \rightarrow v_o = -\frac{R_f}{R_1} v_i$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

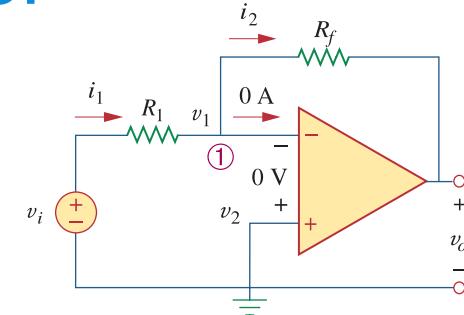
Typical circuits: inverting amplifier

Conclusions:

1. The gain is the ratio of the feedback resistances R_f and R_1

- if $R_f = 0 \rightarrow$ the output is zero (v_o is grounded) **and the output current?**
- setting $R_1 = 0$ **is not allowed** (this would ground the input voltage source)

2. The polarity of the output is the reverse of the input, thus the name “inverting” amplifier



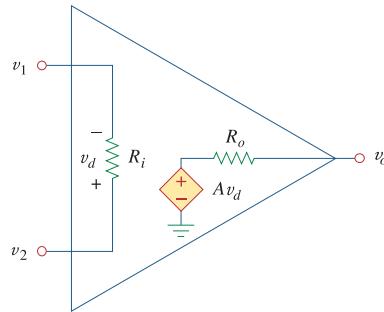
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$v_o = -\frac{R_f}{R_1} v_i$$

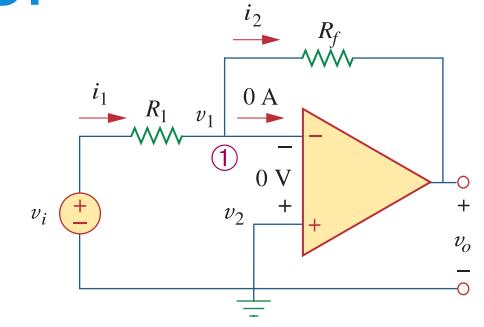
Typical circuits: inverting amplifier

Equivalent circuit of the inverting amplifier

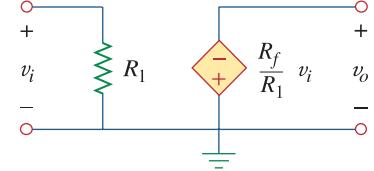
- Recall that



- Important observation: the amplifier's input resistance is finite!



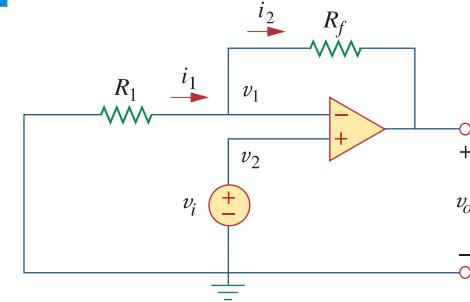
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



Typical circuits: noninverting amplifier

Topology:

- the input voltage v_i is connected to the noninverting input
- the inverting input is connected via a feedback resistance R_f to the output and via a resistance R_1 to the ground
- The op-amp is taken to be ideal



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Typical circuits: noninverting amplifier

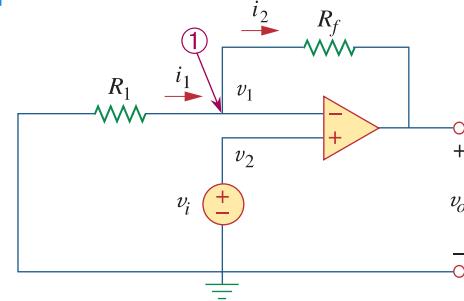
Analysis:

1. Apply KCL at node ①: $i_1 = i_2$

$$v_1 = \frac{R_1}{R_1 + R_f} v_o$$

2. The voltage across the input terminals is zero: $v_1 = v_2 = v_i$

- Final result: $v_o = \frac{R_1 + R_f}{R_1} v_i = \left(1 + \frac{R_f}{R_1}\right) v_i$

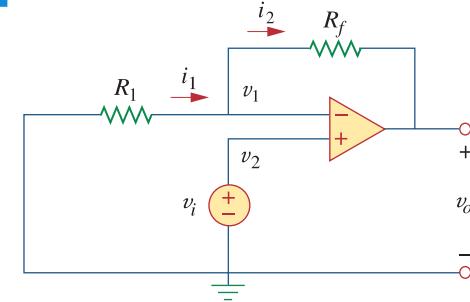


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Typical circuits: noninverting amplifier

Conclusions:

1. The gain is the ratio of the feedback resistances R_f and R_1 + 1!!!
 - if $R_f = 0$ the output is directly connected to the inverting input (next slide)
 - setting $R_1 = 0$ is not allowed (this would again ground the input voltage source)
2. The minimum gain is 1
3. The polarity of the output is the copy of the input, thus the name “noninverting” amplifier

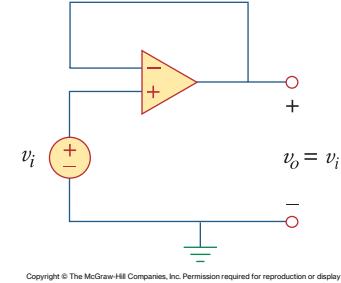


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$v_o = \left(1 + \frac{R_f}{R_1}\right) v_i$$

Typical circuits: noninverting amplifier

- By setting the feedback resistance $R_f = 0$, the gain becomes 1 (the resistance R_1 is redundant and was eliminated)
- The new configuration is referred to as **voltage follower** (unity-gain amplifier)
- It copies the input signal by providing high input impedance → expedient for impedance matching or for measuring weak source signals



Typical circuits: analysis

1. For ideal op-amps:

- Do we have negative feedback? **yes → go on** **no → stop**
- Apply nodal/mesh analysis to the circuit
- Account for the zero conditions at the input terminals:
 - the current into the input terminals is zero
 - the voltage across the input terminals is zero
- Solve the resulting equations

} fill them in the
equations

2. For nonideal op-amps: replace the op-amp by its equivalent circuit and solve the complete circuit

Typical circuits: analysis

1. For ideal op-amps:

- Do we have negative feedback? **yes** → **go on** **no** → **stop**
- Apply nodal/mesh analysis to the circuit
- Account for the zero conditions at the input terminals:
 - the current into the input terminals is zero
 - the voltage across the input terminals is zero
- Solve the resulting equations

Never apply nodal analysis at the output terminal if $R_o = 0$!
(the output of a dependent voltage source)

Typical circuits: analysis

- Consider the circuit at the right, in which the op-amp is an **ideal one**.
- Determine the output voltage v_o .

1. Is there negative feedback? ✓

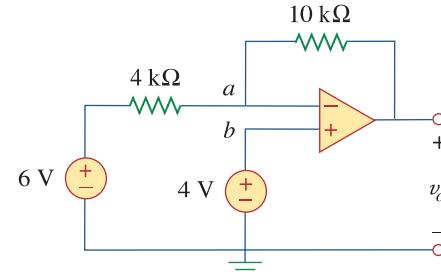
2. Apply the zero conditions

- input current $i_a = 0$

- voltage across the input terminals is zero: $v_a = v_b = 4 \text{ V}$

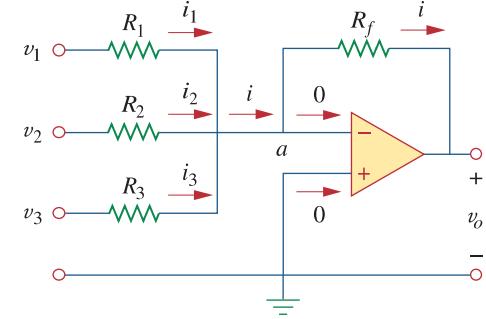
3. Apply KCL @ a: $\frac{v_a - 6}{4k} + \frac{v_a - v_o}{10k} = 0 \rightarrow 7v_a = 30 + v_o$

$v_o = -1 \text{ V}$



Typical circuits: summing amplifier

- Op-amps can combine amplification and addition
- **Topology:** inverting amplifier **+** combination of inputs with own resistances
- **Analysis:**
 1. Ohm's law at the inputs: $i_1 = \frac{v_1 - v_a}{R_1}$, $i_2 = \frac{v_2 - v_a}{R_2}$, $i_3 = \frac{v_3 - v_a}{R_3}$
 2. KCL @ a: $i_1 + i_2 + i_3 = i$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Typical circuits: summing amplifier

- Analysis (continued):

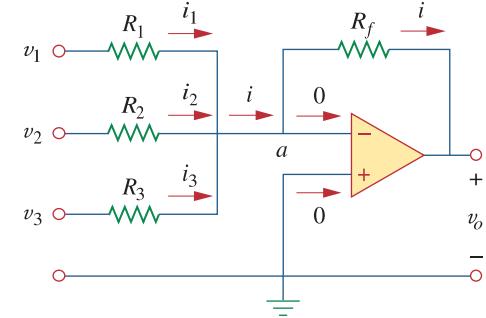
3. Account for the zero conditions

- voltage between terminals is zero $\rightarrow v_a = 0$
- current in the terminal is zero

$$\downarrow i = \frac{v_a - v_o}{R_f} = i_1 + i_2 + i_3$$

4. A bit of algebra: $v_o = - \left(\frac{R_f}{R_1} v_1 + \frac{R_f}{R_2} v_2 + \frac{R_f}{R_3} v_3 \right)$

- Conclusion: not only a sum, but a weighted sum!

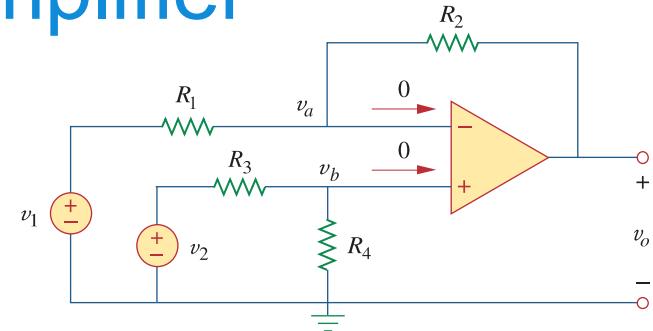


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Typical circuits: difference amplifier

- Subtraction: based on the output being proportional to the difference between inputs
- Topology: combination of inverting + noninverting amplifier
- Analysis (zero input currents implied)

1. KCL @ a: $\frac{v_1 - v_a}{R_1} = \frac{v_a - v_o}{R_2}$ $\rightarrow v_o = \left(\frac{R_2}{R_1} + 1 \right) v_a - \frac{R_2}{R_1} v_1$
2. Voltage divider @ b: $v_b = \frac{R_4}{R_3 + R_4} v_2$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

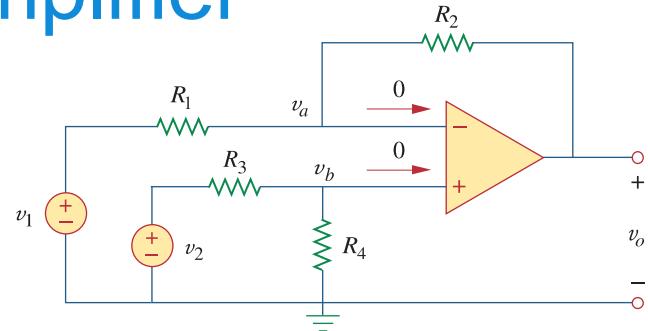
Typical circuits: difference amplifier

3. Using $v_a = v_b +$ a bit of algebra

$$v_o = \frac{R_2 (1 + R_1/R_2)}{R_1 (1 + R_3/R_4)} v_2 - \frac{R_2}{R_1} v_1$$

4. Select $R_1 = R_2$ and $R_3 = R_4$ it yields a subtractor

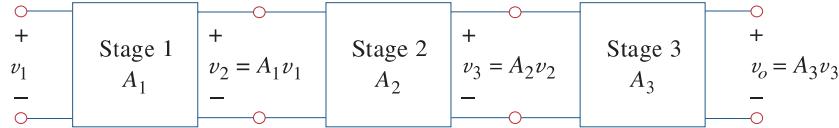
$$v_o = v_2 - v_1$$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

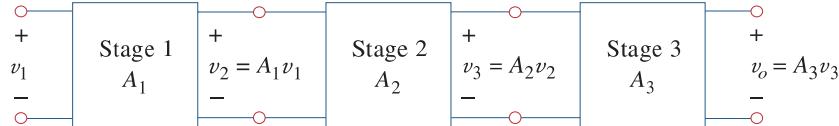
Typical circuits: cascaded op-amps

- It is common to use multiple op-amp circuits chained one after the other together
- This head-to-tail connection is referred to as **cascading**
- Each amplifier is referred to as a **stage**
- **Purposes:**
 - higher gain under stable amplification
 - mixing high gain and input resistance matching



Typical circuits: cascaded op-amps

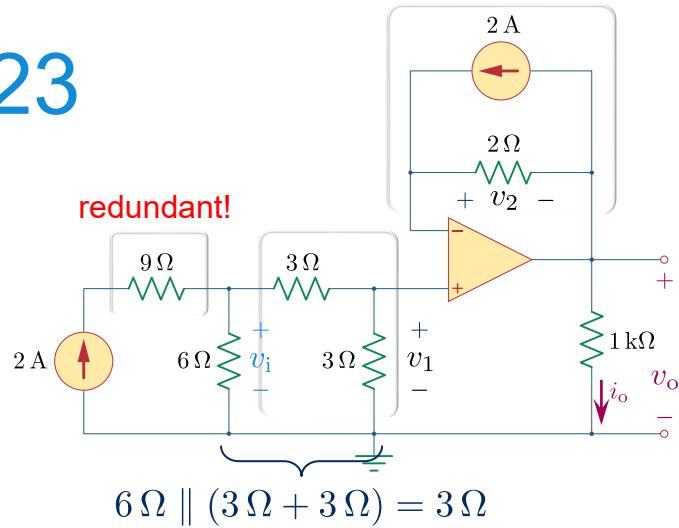
- It is common to use multiple op-amp circuits chained one after the other together
- This head-to-tail connection is referred to as **cascading**
- Each amplifier is referred to as a **stage**
- **Total gain:** $A_{\text{tot}} = A_1 A_2 A_3 (\dots)$



Exam(ple) – from 2022-2023

Consider the circuit at the right.

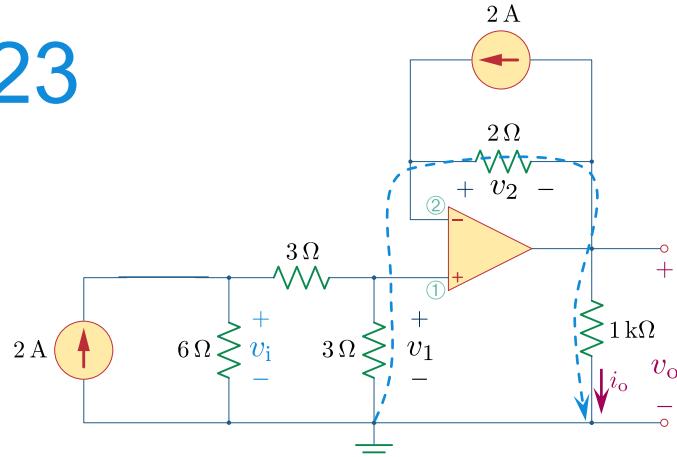
- Calculate the current i_o in the circuit, by assuming the op-amp to be ideal
- Circuit analysis: (everything we know about the problem)
 - is the op-amp ideal? ✓
 - is there feedback? ✓
 - what are the voltages applying to the op-amp? ✓



Exam(ple) – from 2022-2023

- Applicable voltages:

- feedback: $v_2 = 4V$
- input: $v_i = 6V$
- noninverting input: $v_1 = 3V$



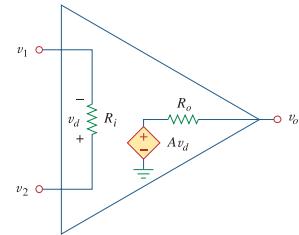
- Voltage across the input terminals is zero → between ① and ②

→ KVL on the loop → $v_o = v_1 - v_2 = -1 V$

- Ohm's law: $i_o = -\frac{1}{1k} = -1 mA$

Summary of the day

- **Ideal op-amps:**
 - amplification $A \rightarrow \infty$
 - resistances: input $R_i \rightarrow \infty$, output $R_o \searrow 0$
- **Zero conditions:**
 - input currents are zero
 - with a (negative) feedback, the voltage across the input terminals is zero $v_2 - v_1 \searrow 0$



Summary of the day

- Typical op-amp circuits

*Hint: Do not recall formulas,
recall how to derive them!*

TABLE 5.3

Summary of basic op amp circuits.

Op amp circuit	Name/output-input relationship
	Inverting amplifier $v_o = -\frac{R_2}{R_1} v_i$
	Noninverting amplifier $v_o = \left(1 + \frac{R_2}{R_1}\right) v_i$
	Voltage follower $v_o = v_i$
	Summer $v_o = -\left(\frac{R_f}{R_1} v_1 + \frac{R_f}{R_2} v_2 + \frac{R_f}{R_3} v_3\right)$
	Difference amplifier $v_o = \frac{R_2}{R_1} (v_2 - v_1)$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Next tasks

- Please do the SGH4
- Seminars of Tuesday (only 3 rooms!) and Friday (new location – Flux / Hall A!)
- Next week: new electrical elements: capacitances and inductances

Thank you!