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Today

 Recap week 1.6:
— Circuits with operational amplifiers
— How to solve circuits with op-amp -> simplifying assumptions for ideal
op-amp
— Inverting & Non-inverting configurations

« Week 1.7:
— Capacitance / Capacitor
— Inductance / Inductor
— (C—=C'and L—L interconnections

« Summary and Next Week
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Recap of week 1.6

* Operational amplifiers:
—Iideal: 4 — ©o; R, - o0; R, =0

— non-ideal ———— . W

* |deal Op-Amp is your friend in a circuit:
— currents into both input terminals are zero

— under feedback operation, the two inputs have
the same voltage
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Week 1.7
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The capacitance and the capacitor
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Capacitance ]

Capacitance & capacitor R

+q + —-q

- Capacitor: a passive element designed to + |-
store energy in its electric field =
O,

 |n a linear capacitor: ¢ = C'v with C' = capacitance,

measure unit farad (F) Dielectric with
permittivity ¢
1 . Metal plates
« Typical example: the parallel-plate capacitor /warea/x
eA  ee0A
O —_  — — o—| —
d d

p
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Capacitance & capacitor

Circuital perspective

\deally: capacitors have only
capacitance = as circuit elements, |

we refer to them as capacitances
i C

Symbol: o= o

+ v — Leakage resistance ]

Real capacitors:

o I} o
Capacitance ]
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Capacitance: features

Passive convention ] dq( ) d

Reciprocal relation: i—wv

%
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\:% i(t) = —, = lovl =C— “P(t) =C dt

T o) = é/_ i(r)dr

Basic relation: v—1

du(t)

1 t

1 [ .
:\6 /_OOZ(T)dT+6 ; i(7)dr

Y
the voltage at ¢, [

1 [t
v(t) = v(tg) + e /to i(7)dT




Capacitance: features [e”ergy: / dt]

- Capacitances only store or release electrostatic energy -
they do not generate any energy

dv(t
p(t) = v()i(t) = Co(t) ?(}155) (watt;W)
- E :

e t dv v(t) 1, 5v®
w(t) = / p(T)dr = C’/ v(T)—dT = C/ vdv = =Cv

—00 —00 dr v(—00) 2 3(0@
[w(t) = 101}2(75) (joule;J)] v(—00)=0

2 Assuming that the capacitor was

totally discharged at t = —oo

]
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Capacitance: features [e”ergy: / dt]

- Capacitances only store or release electrostatic energy -
they do not generate any energy

* Energy — there are 3 variants basically .
— from an initial 0-energy to a well-define state at ¢: w(t) = 501;2(75)

v(t) g
— accounting for an initial energy: w = (J/ ’Ud—vdT + w(to)
v(to) 9T
v(t2) o
— energy stored over an interval: Awi, = C/ ?Jd—TdT
v(t1)

]
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Capacitance: features [e”ergy: / dt]

- Capacitances only store or release electrostatic energy -
they do not generate any energy

* Energy:

1
— from an initial 0-energy to a well-define state at ¢: w(t) = 50v2(t)

— substituting water molecules for electric charges =it looks like
“filling” an empty glass with water

see Ali Sheikholeslami, “A Capacitor Analogy,” parts 1 & 2 on BS

%
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Capacitance: features

« Consequence of the integral-form:

(0 = vlt) + 5 | 0o
v(t) = vlty) + _/ io(7)dr

0 C to ( ) C: SMF
« The capacitance voltage is continuous oy

* Consequence of the differential form: 0 5 8 [ (ms)
i(t) = Cdv(t) _ 0 i() (mA) )
dt Allows discontinuities]
* In steady state (v(¢) = constant) 20
0 6 8 t (ms)
the capacitance behaves as an open o

circuit
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Capacitance: example

The current through a 0.5 F capacitor is i(t) = 6(1 — e %)A
Calculate the voltage and power at t=2s. Assume v(0)=0V.

To find the voltage apply the equations seen a few slides before.
t

1.
v(t) = v(0) +EJ i(t)dt

0

In this case this means v(t) = 0—15f0t 6(1 — e~ ")drt - Solve the integral and

calculate the voltage at t=2s. [Expected result V(t) = 12(t + e~ t) — 12 V]

To find the power, you can simply multiply the voltage and the current and
calculate the value at t=2s. [Expected result P=70.6W]

]
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Capacitance: example 2

- For the given current, calculate the voltage on the 4uF capacitance,
by accounting for v(0) = 0.

Current (UA) Voltage (mV)
16 |------oooeeee e
15 4_
10 — 3.5 —
3_
5]
5 4 2.5
0 T 1 T T T _— 2
05 1 15 25 3 35 Time
5 (ms) 1.5 —
< T 1
~10 4
0.5
1 t- 0+ T T T T T T T I )
U(t)_'U(tO)‘|‘E ’L(T)dT 05 1 15 2 25 3 35 4 (Tlm;e
ms
to

%
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Capacitance: example 2

« Calculate the power flow due to the 4uF capacitance.

Power (nW)

4 60 —
35 50 —
X 3 40 —
2.5 30 -
20 —

4 1.5 10 , .
5 3 35 | Time " 0 T T T T T :
(ms) 057 104 05 1 15 25 3 4 (Tlmc)e
0 ms
05 1 15 2 25 3 35 4 Time —20
(ms) -30 -

]
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Capacitance: example 2

- Calculate the energy stored in the 4uF capacitance.

Power (nW)

%
TUDelft

60 —
50 —
40 —
30 —
20 —
10
0 =

—10 4
—20 4

—30 =

Energy (pJ)

35
30
25
20
154

| | | | | | | L
05 1 15 2 25 3 35 4 [Iime
(ms)
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The inductance and the inductor
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Flux lines

Inductance & inductor

 Inductor: a passive element designed to
store energy in its magnetic field

di(t)
dt

- NV _V_V V- _ .
/’ .- - o . N
L

* In alinear inductor: v(t) = L with L = inductance,

measure unit henry (H)

Cross-sectional

I
/area,A
- Typical example: the solenoid m |
Core material —
B ,UNQA o //Jr,uON2A

L Number of turns, N]

]
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Inductance & inductor

Circuital perspective = -

\deally: inductors have only inductance
as circuit elements, =——= we refer to
them as inductances

] L
Symbol; o——mm—-0
+

Inductance ] Winding resistance ]
. N s
Real inductors: o —m—wis

1
T Winding capacitance_] N e

TU Delft "
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Inductance: features Basic relation: i—v

Passive convention ]

— di(t)
To be explained in T _
\f(f) “Electricity & Magnetism”J (1) = Lift) ;__E U(t) =L dt

\J

v t to t
ft) k i(t) = %/ v(T)dT = %/ v(T)dT + % /to v(T)dT

o - —
the current at ¢, [
1 t
Reciprocal relation: v—i | i(t) :i(to)+z/ v(T)dT
to

]
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Inductance: features [e”ergy = / dt]

* Inductances only store or release magnetic energy -
they do not generate any energy

di(t)

p(t) = i(t)v(t) = Li(t) ” (watt;W)
* Energy: »
t b di GO N0
w(t) = /_Oop(T)dT = L/_OOZ(T)EdT = L/i(_oo) idi = =L (o0
T | ]
[w(t) = §L7j2(t) (Joule;J)] i(—o00) =0

%
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Inductance: features [e”ergy = / dt]

* Inductances only store or release magnetic energy -
they do not generate any energy

* Energy:
— from an initial 0-energy to a well-define state at ¢: w(t) = %Lzﬂ(t)
— accounting for an initial energy: w = L/ id—dT + w(to)
i(to) 9T

i(t2) i

— energy stored over an interval: Aws = L/ Zd—TdT
i(t1)

%
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Inductance: features

« Consequence of the integral-form:

1 t
i(t) =1i(ty) + f/ v(T)dr i(7) (mA)
- to . i 20k - — — —
« The inductance current is continuous |/\

I ? 4t (ms)

» Consequence of the differential form:

di(t
o(t) = L ;(t) g
e In Steady state (’L(t) — Constant) o(f) (mv) Allows discontinuities]
100
the inductance behaves as a short-circuit 2 T )
-100

]
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Inductance: example

Consider a 0.5 H inductance and a current flowing through it expressed as below:

.. (o4 t<0
l(t)_{Zte“”A t>0

Calculate the voltage across the inductance and the power at t=1s.
-Recall that V(t)=LdI(t)/dt...so simply apply the formula.

-Then simply use the general relation between instantaneous power, voltage and current.

Expected result V(t) = e 4t (1 — 4t)V and — 6e 8W

%
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Inductance: example 2

* The voltage over a 200mH (1=3¢)exp(=3¢) mV, £ >0
inductance can be expressed as: v(¢) :{ ’
Calculate the current, the power 0, t<0
and the energy. Yoo ()

1.01“
0.8
0.6

0.4

0.2

05 1
0

-0.2

%
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Inductance: example 2

* The voltage over a 200mH
inductance can be expressed as: v(¢) =
Calculate the current, the power

and the energy.

Current (mA)
0.7 1
0.6
0.5
0.4 1
0.3J
0.2 1
0.1

0 T T T T T 1
05 1 15 2 25 3 35 qipe()

%
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(1-3t)exp(-3¢) mV, >0
0, t<0

t

i) =i(0)+ [o(x)de

0

103 0 Integration by parts
=0+-—[(1-37)exp(-30)dr > 7ftngi -
200 f@g@ ~ [ f'@g(@)dr

10° ( ’
=2—80 !(GXP(—%)Q'T J\

_ 10’ [exp(—sﬂ’ _3[IGXP(—3T) L p(31) D

200 -3 -3 -9
=5texp(—3t) mA, t >0

0 0,

26



Inductance: example 2

* The voltage over a 200mH (1-3¢)exp(-3t) mV, >0
inductance can be expressed as: v(¢) :{ 0. 1<0 S

Calculate the current, the power
and the energy.

p(1)=v(®)i(t) =5x107° -#(1-3¢) exp(—6t) W

%
TUDelft
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Inductance: example 2

* The voltage over a 200mH (1-3¢)exp(-3t) mV, >0
inductance can be expressed as: v(¢) :{ 0. 1<0 ’

Calculate the current, the power
and the energy.

1, 1 L1 ’ o
w(it)=—=Li"(t)=—-200x107" -| —texp(-37) | =2,5x107"t" exp(—6¢) J, t >0
(1) 5 (1) 5 (200 p( )J p(-61)

N

w(t) = j‘p(x)a’x—SXIO‘6 t(1-37)exp(—67)dr =2,5x10°°t* exp(—6¢) J, t =0

—0 Solving the integral is more complicated
in this case than the operation above.
However, that formula is applicable only

3 t formula is
TU De I ft because the initial condition was zero. -
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Coffee Break |

You like living dangerously?
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C-C and L-L interconnections
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Capacitances in parallel

- Determine the equivalent capacitance in the case

of several capacitances connected in parallel

* Apply KCL.:
N

 Parallel connection:

%
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dv

N
Y =y al
k=1 k=1

dt

iG C,—

i‘*

do N
:d_z:: " _Ceth

r

N
:ch
k=1

~

J
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Capacitances in series '@

- Determine the equivalent capacitance in the case
of several capacitances connected in series

* Charge distribution: ¢ =g, k=1,...,N
N N

N
- Apply KVL: v = N AR
PPly v I;’Uk Con ;Ck C]Z

Coq

N 2 capacitances:
- Series connection: [ L > 1} i C1 O

Coq =

%
TUDelft

C1+Cs
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Capacitances: example

* Determine the equivalent capacitance of the circuit below

o]
TUDelft

|| 3uF
it || ! !
2MF_ __4MF
Ue —
2uF
— 3uF
o)

|| 12uF
I

=

33



Inductances in series
« Determine the equivalent inductance in the case of i:%

several inductances connected in series

* Apply KVL.:
N

?T‘

» Series connection:

%
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f: dz

Z " eth

r

N
= ZL‘C
k=1

J

34



. : 4 14 i3¢ i,d
Inductances in parallel ; % % % %

several inductances connected in parallel i

* Apply KCL.:

« Determine the equivalent inductance in the case of i_’:%
1

N d di di A N o1
’ I;““ ‘dt dt < dt ZLk v L. 'L

N . .
- Parallel connection: | L _ zl 2 inductances:
L [ L1 Lo
o Ly+ Lo

%
TUDelft
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Exam exercise example
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Exam(ple)

« Consider the following circ_uit under steady state DC conditions.

"
=
I +
VCJQ
- §20- 9A

a) Calculate the voltage V. across the capacitance and current I; through
the inductance.

b) Determine the value of the capacitance C' so that the stored energy in
the capacitor is equal to the stored energy in the inductor.

Note that something went wrong with the fonts: there is no minus after
TU De|ft the values of each resistor; the inductor is measured in mH. 37




Exam(ple)
« Consider the following cirZ%_uit under steady state DC conditions.

64'H
Y YY)

=T
Ve 20-
3A - §20- 9A
20-

Before you start writing equations, read & look -> the ‘magic words’ are
under steady state DC conditions. What happens to the capacitor and
the inductor in this case?

In exam conditions I'd always advice you to redraw the circuit (even if the
exercise does not explicitly ask for it).

]
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Exam(ple)

a) Calculate the voltage V,, across the capacitance and current I; through
the inductance.

k)

I;, <= given by the 3A current source == I;, = 3A

: Vi WV
Vo< nodal analysis @ 1: 4—(1)+2_5:9+3 e V=160V

- Voltage divider on the two 20 Ohm resistors: Vo =80V
TUDelft 39



Exam(ple)

b) Determine the value of the capacitance (' so that the stored energy in

the capacitor is equal to the stored energy in the inductor.
20-

I_L> V.|C-J_C 20-
3AG> B §2o- G)QA
20-
_ LI? CV?A
- Equate the energies for L, I,;, Cand V,, = 2L == :
2 *x10 3%
- Capacitance: ¢ = =L =222 2 — (.09 « 10~3 = 90uF

VS 6400

%
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Summary
« Capacitance (capacitors):

. . t
~ basic relations: ¢ =Cv, i=cS, v =~
2 to
— stored energy: w= (1), w= 1,
— v at the capacitance terminals is continuous in ¢
N

N
— parallel: ¢, =) ¢y series:

- Inductance (inductors):

C’eq Ck
dz . 1 [t )
— basic relations: v=r%, i(t)= 1 / o(7)dr + i(to)
to
— stored energy: w = lLi 2(¢)

— 1 through the mductance IS contlnuous int
N
Z Z 1

eq

i(r)dr + v(to)

41
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Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 6.1

Important characteristics of the basic elements.’

Parallel: R

At dc: Same

Circuit variable
that cannot

. RiRs
9T R, + R,

Relation Resistor (R) Capacitor (C) Inductor (L)
R ! Jt i(T)dT + v(ty) Ldi
v- v = v=— v v=L—
[ i cl i(r)dr 0 s
d 1 [’
i-v: i =v/R i = ?(: i = z [ v(T)dT + i(to)
p or w: p = iR = w = lCv2 w = lLi2
’ 2 2
: _ _ GG _
Series: Reg= R+ Ry, Coq = m Leg =Ly + Lo

Ceq= Cl -+ C2

Open circuit

change abruptly: Not applicable v

L,
Log=——"+
Ly + I

Short circuit

42
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Next tasks

Thank you!

My next lecture with you will be in Linear Circuits B. Success with
the end-term exam and don’t hesitate to contact me in case of
questions!

* SGH (Self-Graded Homework assignments): posted today;

submission due on Wednesday.

- Seminar: in groups on Tuesday & altogether on Friday.

* Next week:

— First-order circuits with a transient (dynamic circuits)

43
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