

EE1C1 “Linear Circuits A”

Week 1.7

Francesco Fioranelli/ Iordan E. Lager

My e-mail address: F.Fioranelli@tudelft.nl / room 20.280 (20th floor of EWI building)

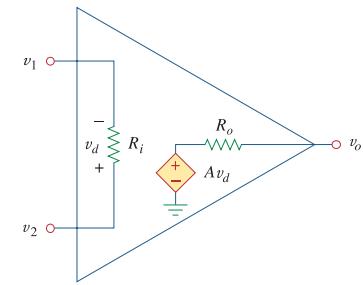
My group website: radar.tudelft.nl

Today

- Recap week 1.6:
 - Circuits with operational amplifiers
 - How to solve circuits with op-amp -> simplifying assumptions for ideal op-amp
 - Inverting & Non-inverting configurations
- Week 1.7:
 - Capacitance / Capacitor
 - Inductance / Inductor
 - $C-C$ and $L-L$ interconnections
- Summary and Next Week

Recap of week 1.6

- Operational amplifiers:
 - ideal: $A \rightarrow \infty$; $R_i \rightarrow \infty$; $R_o = 0$
 - non-ideal



- Ideal Op-Amp is your friend in a circuit:
 - currents into both input terminals are zero
 - under feedback operation, the two inputs have the same voltage

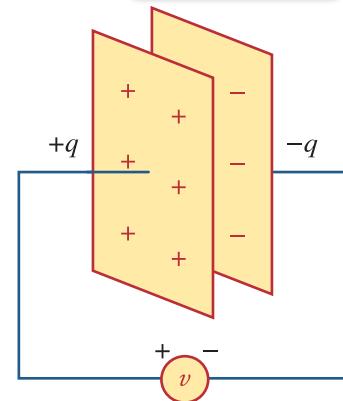
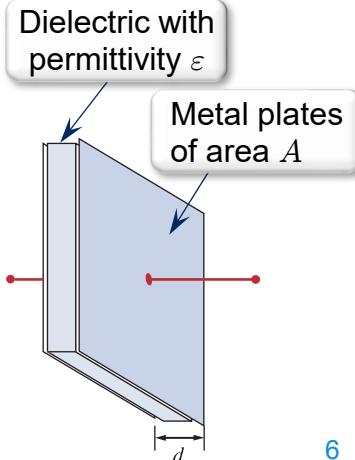
Week 1.7

The capacitance and the capacitor

Capacitance & capacitor

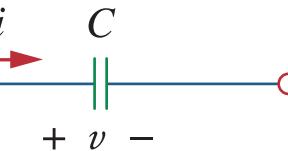
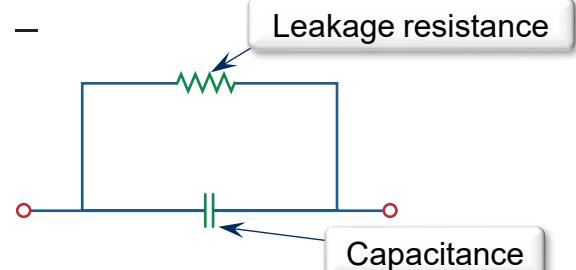
- **Capacitor:** a passive element designed to store energy in its electric field
- In a linear capacitor: $q = Cv$ with **C = capacitance**, measure unit farad (F)
- **Typical example:** the parallel-plate capacitor

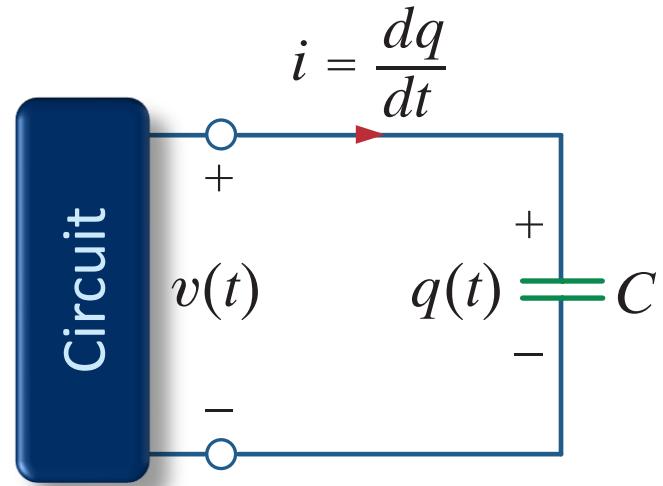
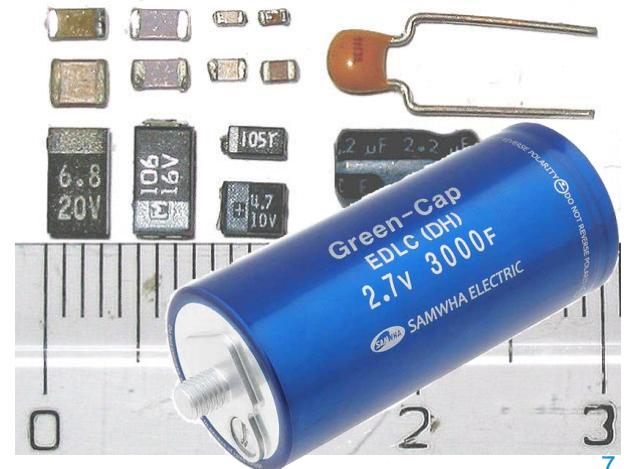
$$C = \frac{\varepsilon A}{d} = \frac{\varepsilon_r \varepsilon_0 A}{d}$$



Capacitance & capacitor

- Circuital perspective
- Ideally: capacitors have only capacitance as circuit elements, we refer to them as **capacitances**

- Symbol: 
- Real capacitors: 

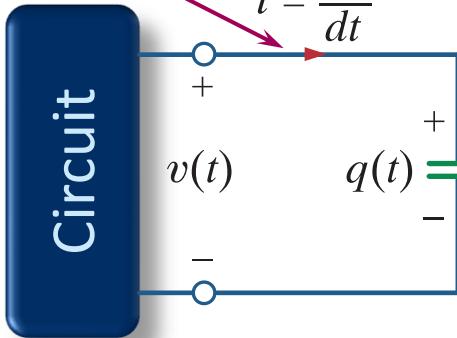


Capacitance: features

Basic relation: $v \rightarrow i$

Passive convention

$$i = \frac{dq}{dt}$$



$$i(t) = \frac{dq(t)}{dt} = \frac{d}{dt}[Cv(t)] = C \frac{dv(t)}{dt}$$

$$i(t) = C \frac{dv(t)}{dt}$$

$$v(t) = \frac{1}{C} \int_{-\infty}^t i(\tau) d\tau = \underbrace{\frac{1}{C} \int_{-\infty}^{t_0} i(\tau) d\tau}_{\text{the voltage at } t_0} + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$$

Reciprocal relation: $i \rightarrow v$

$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$$

Capacitance: features

$$\text{energy} = \int \text{power} \, dt$$

- Capacitances only store or release electrostatic energy → they do not generate any energy
- Power: $p(t) = v(t)i(t) = Cv(t) \frac{dv(t)}{dt}$ (watt;W)
- Energy:

$$w(t) = \int_{-\infty}^t p(\tau) d\tau = C \int_{-\infty}^t v(\tau) \frac{dv}{d\tau} d\tau = C \int_{v(-\infty)}^{v(t)} v dv = \frac{1}{2} Cv^2 \Big|_{v(-\infty)}^{v(t)}$$

$$w(t) = \frac{1}{2} Cv^2(t) \text{ (joule;J)}$$

$$v(-\infty) = 0$$

Assuming that the capacitor was totally discharged at $t = -\infty$

Capacitance: features

$$\text{energy} = \int \text{power} \, dt$$

- Capacitances only store or release electrostatic energy → they do not generate any energy
- **Energy** – there are 3 variants basically
 - from an initial 0-energy to a well-defined state at t : $w(t) = \frac{1}{2}Cv^2(t)$
 - accounting for an initial energy: $w = C \int_{v(t_0)}^{v(t)} v \frac{dv}{d\tau} d\tau + w(t_0)$
 - energy stored over an interval: $\Delta w_{12} = C \int_{v(t_1)}^{v(t_2)} v \frac{dv}{d\tau} d\tau$

Capacitance: features

$$\text{energy} = \int \text{power} \, dt$$

- Capacitances only store or release electrostatic energy → they do not generate any energy
- Energy:
 - from an initial 0-energy to a well-defined state at t : $w(t) = \frac{1}{2}Cv^2(t)$
 - substituting water molecules for electric charges → it looks like “filling” an empty glass with water
see Ali Sheikholeslami, “A Capacitor Analogy,” parts 1 & 2 on BS

Capacitance: features

- Consequence of the integral-form:

$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$$

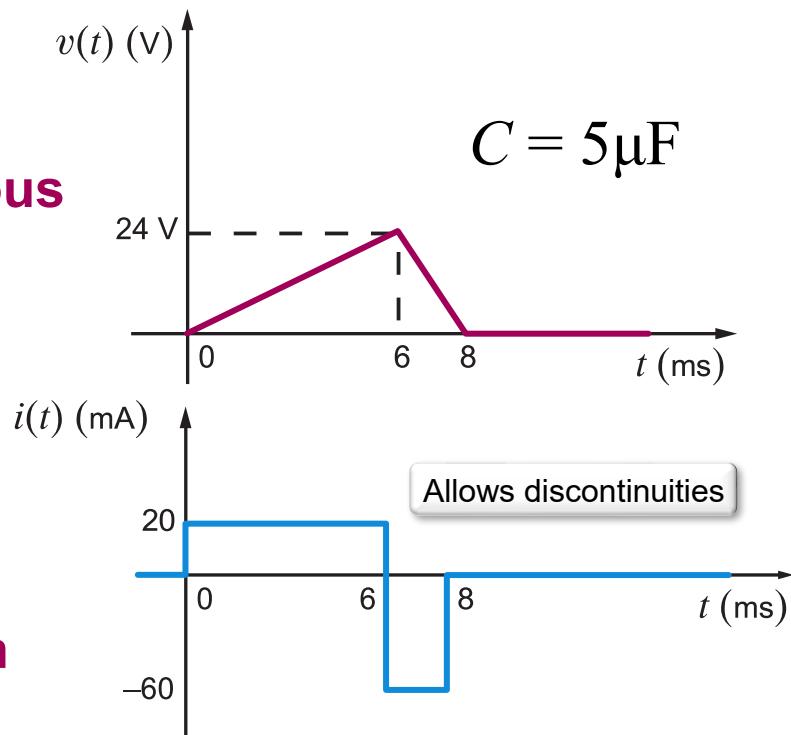
- The capacitance voltage is continuous**

- Consequence of the differential form:

$$i(t) = C \frac{dv(t)}{dt} = 0$$

- In steady state ($v(t) = \text{constant}$)**

the capacitance behaves as an open circuit



Capacitance: example

The current through a 0.5 F capacitor is $i(t) = 6(1 - e^{-t})A$

Calculate the voltage and power at t=2s. Assume v(0)=0V.

To find the **voltage** apply the equations seen a few slides before.

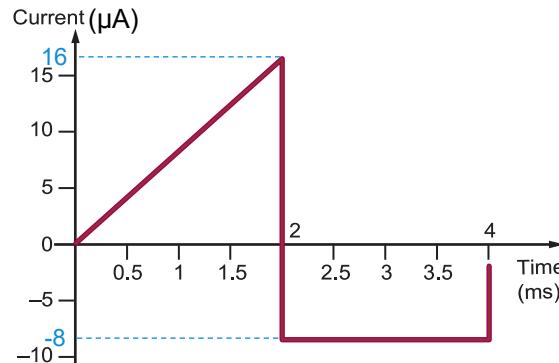
$$v(t) = v(0) + \frac{1}{C} \int_0^t i(\tau) d\tau$$

In this case this means $v(t) = \frac{1}{0.5} \int_0^t 6(1 - e^{-\tau}) d\tau$ - Solve the integral and calculate the voltage at t=2s. [Expected result $V(t) = 12(t + e^{-t}) - 12 V$]

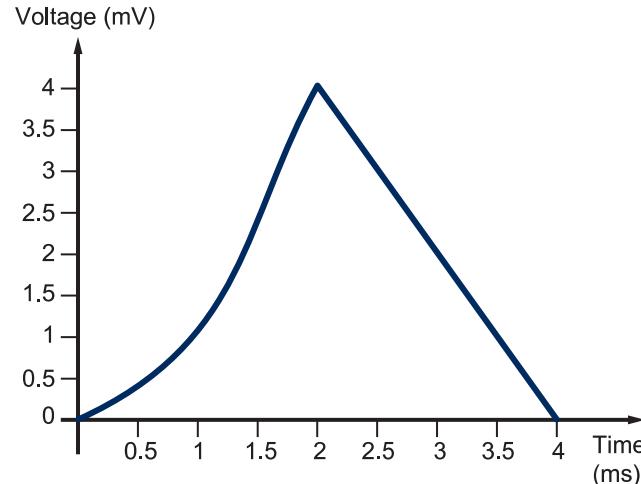
To find the **power**, you can simply multiply the voltage and the current and calculate the value at t=2s. [Expected result $P=70.6W$]

Capacitance: example 2

- For the given current, calculate the **voltage** on the $4\mu\text{F}$ capacitance, by accounting for $v(0) = 0$.

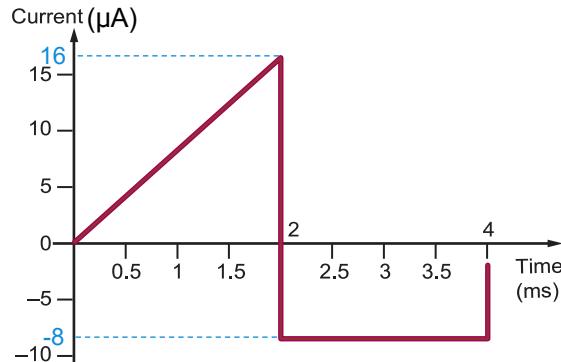
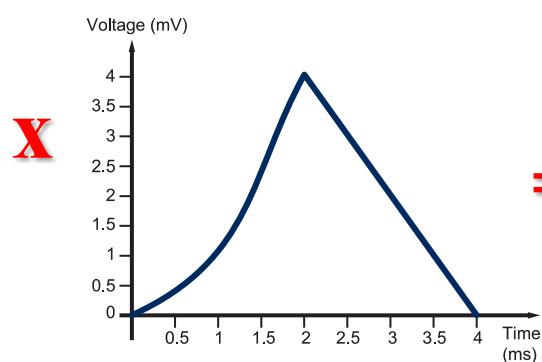
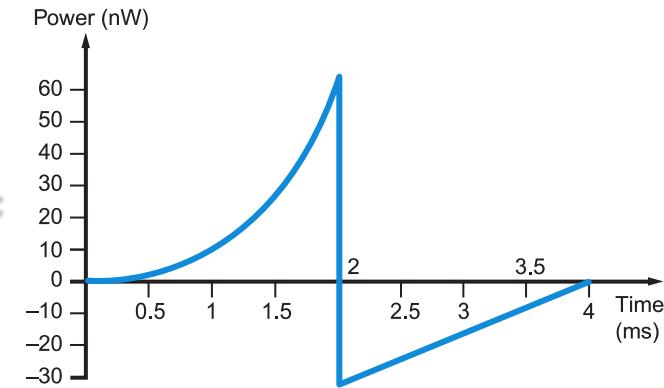


$$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\tau) d\tau$$



Capacitance: example 2

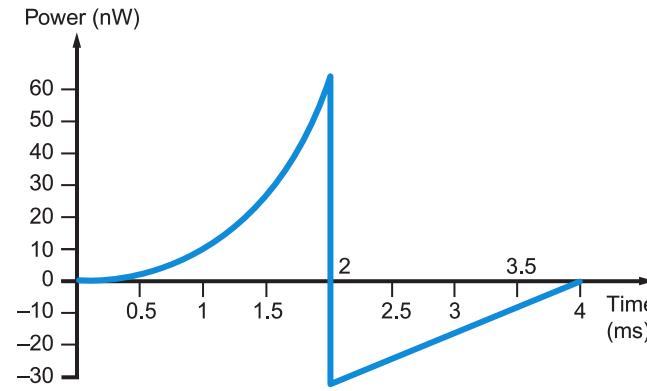
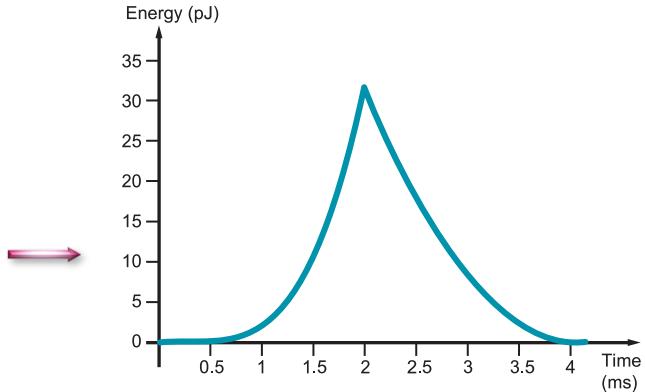
- Calculate the **power** flow due to the $4\mu\text{F}$ capacitance.



$$p(t) = v(t)i(t)$$

Capacitance: example 2

- Calculate the **energy** stored in the $4\mu\text{F}$ capacitance.

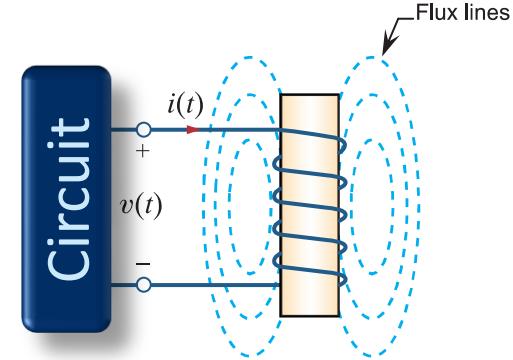


$$w(t) = C \int_{-\infty}^t v(\tau) \frac{dv}{d\tau} d\tau \quad w(t) = \int_{-\infty}^t p(\tau) d\tau$$

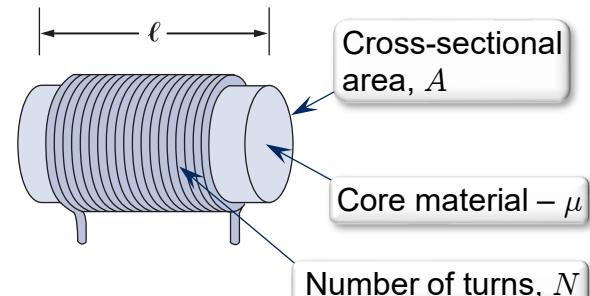
The inductance and the inductor

Inductance & inductor

- **Inductor:** a passive element designed to store energy in its magnetic field
- In a linear inductor: $v(t) = L \frac{di(t)}{dt}$ with ***L* = inductance**, measure unit henry (H)
- **Typical example:** the solenoid

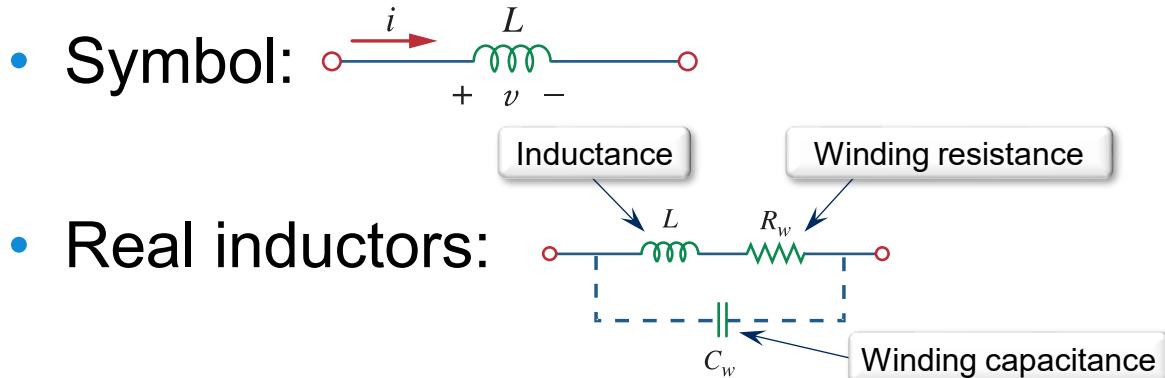
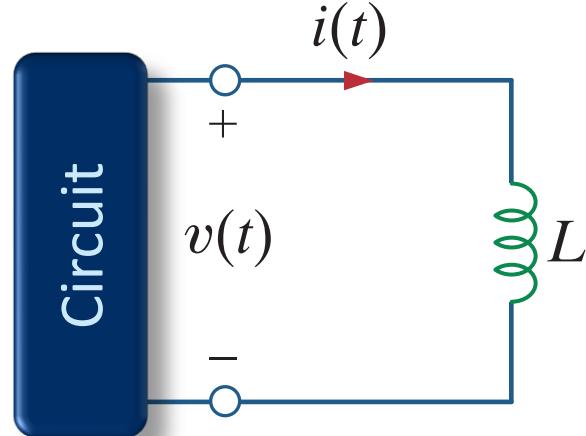
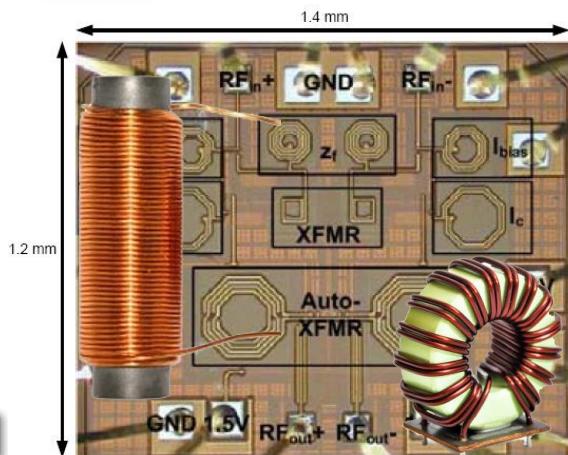


$$L = \frac{\mu N^2 A}{\ell} = \frac{\mu_r \mu_0 N^2 A}{\ell}$$

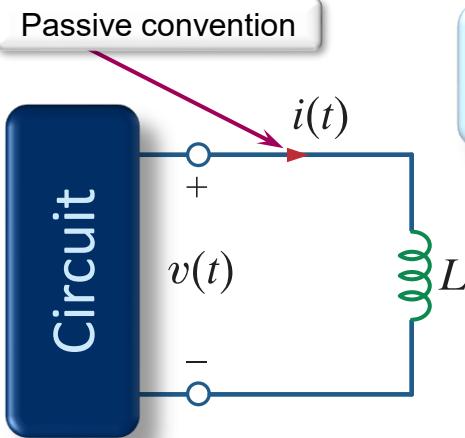


Inductance & inductor

- Circuital perspective
- Ideally: inductors have only inductance as circuit elements, we refer to them as **inductances**



Inductance: features



To be explained in
"Electricity & Magnetism"

Basic relation: $i \rightarrow v$

$$\Phi(t) = L i(t) \rightarrow v(t) = L \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{-\infty}^t v(\tau) d\tau = \underbrace{\frac{1}{L} \int_{-\infty}^{t_0} v(\tau) d\tau}_{\text{the current at } t_0} + \frac{1}{L} \int_{t_0}^t v(\tau) d\tau$$

Reciprocal relation: $v \rightarrow i$

$$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(\tau) d\tau$$

Inductance: features

$$\text{energy} = \int \text{power} \, dt$$

- Inductances only store or release magnetic energy → they do not generate any energy
- Power: $p(t) = i(t)v(t) = Li(t) \frac{di(t)}{dt}$ (watt;W)
- Energy:

$$w(t) = \int_{-\infty}^t p(\tau) d\tau = L \int_{-\infty}^t i(\tau) \frac{di}{d\tau} d\tau = L \int_{i(-\infty)}^{i(t)} i di = \frac{1}{2} Li^2 \Big|_{i(-\infty)}^{i(t)}$$

$$w(t) = \frac{1}{2} Li^2(t) \text{ (joule;J)}$$

$$i(-\infty) = 0$$

Inductance: features

$$\text{energy} = \int \text{power} \, dt$$

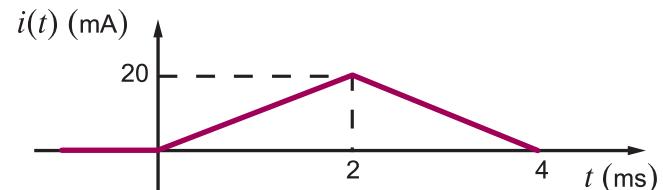
- Inductances only store or release magnetic energy → they do not generate any energy
- Energy:
 - from an initial 0-energy to a well-defined state at t : $w(t) = \frac{1}{2}Li^2(t)$
 - accounting for an initial energy: $w = L \int_{i(t_0)}^{i(t)} i \frac{di}{d\tau} d\tau + w(t_0)$
 - energy stored over an interval: $\Delta w_{12} = L \int_{i(t_1)}^{i(t_2)} i \frac{di}{d\tau} d\tau$

Inductance: features

- Consequence of the integral-form:

$$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(\tau) d\tau$$

- The inductance current is continuous

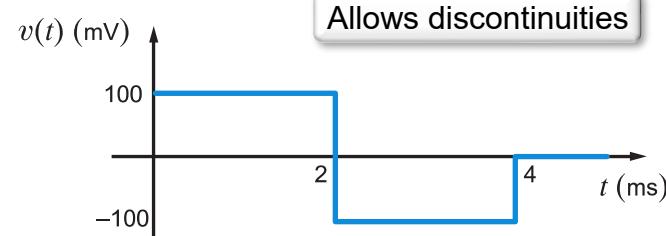


- Consequence of the differential form:

$$v(t) = L \frac{di(t)}{dt} = 0$$

- In steady state ($i(t) = \text{constant}$)

the inductance behaves as a short-circuit



Inductance: example

Consider a 0.5 H inductance and a current flowing through it expressed as below:

$$i(t) = \begin{cases} 0 \text{ A} & t \leq 0 \\ 2te^{-4t} \text{ A} & t > 0 \end{cases}$$

Calculate the voltage across the inductance and the power at t=1s.

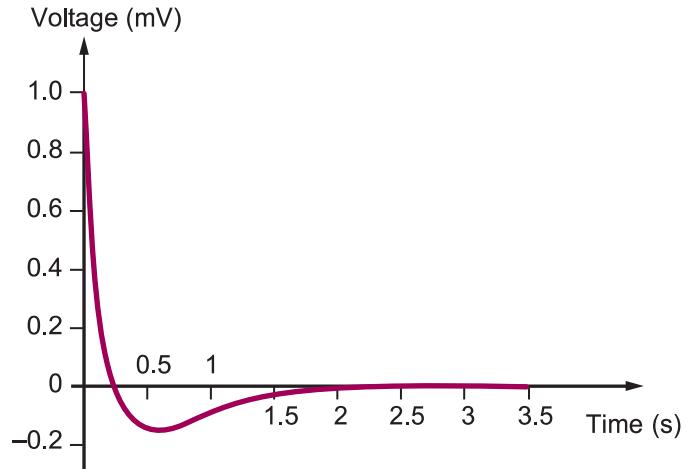
-Recall that $V(t) = Ldi(t)/dt$...so simply apply the formula.

-Then simply use the general relation between instantaneous power, voltage and current.

Expected result $V(t) = e^{-4t}(1 - 4t)V$ and $-6e^{-8}W$

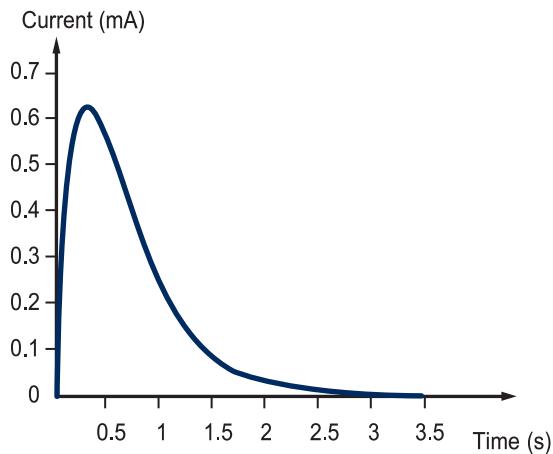
Inductance: example 2

- The voltage over a 200mH inductance can be expressed as: $v(t) = \begin{cases} (1-3t) \exp(-3t) \text{ mV, } t \geq 0 \\ 0, t < 0 \end{cases}$
Calculate the current, the power and the energy.



Inductance: example 2

- The voltage over a 200mH inductance can be expressed as: $v(t) = \begin{cases} (1-3t) \exp(-3t) \text{ mV, } t \geq 0 \\ 0, t < 0 \end{cases}$
Calculate the current, the power and the energy.



$$\begin{aligned} i(t) &= i(0) + \frac{1}{L} \int_0^t v(\tau) d\tau \\ &= 0 + \frac{10^3}{200} \int_0^t (1-3\tau) \exp(-3\tau) d\tau \\ &= \frac{10^3}{200} \left(\int_0^t \exp(-3\tau) d\tau - 3 \int_0^t \tau \exp(-3\tau) d\tau \right) \\ &= \frac{10^3}{200} \left(\left[\frac{\exp(-3\tau)}{-3} \right]_0^t - 3 \left[\frac{\tau \exp(-3\tau)}{-3} + \frac{\exp(-3\tau)}{-9} \right]_0^t \right) \\ &= 5t \exp(-3t) \text{ mA, } t \geq 0 \end{aligned}$$

Integration by parts
-> $\int f(\tau)g'(\tau) d\tau = f(\tau)g(\tau) - \int f'(\tau)g(\tau) d\tau$

Inductance: example 2

- The voltage over a 200mH inductance can be expressed as: $v(t) = \begin{cases} (1-3t) \exp(-3t) \text{ mV, } t \geq 0 \\ 0, \text{ t} < 0 \end{cases}$
Calculate the current, **the power** and the energy.

$$p(t) = v(t)i(t) = 5 \times 10^{-6} \cdot t(1-3t) \exp(-6t) \text{ W}$$

Inductance: example 2

- The voltage over a 200mH inductance can be expressed as: $v(t) = \begin{cases} (1-3t) \exp(-3t) \text{ mV, } t \geq 0 \\ 0, t < 0 \end{cases}$
Calculate the current, the power and **the energy**.

$$w(t) = \frac{1}{2} L i^2(t) = \frac{1}{2} \cdot 200 \times 10^{-3} \cdot \left(\frac{1}{200} t \exp(-3t) \right)^2 = 2,5 \times 10^{-6} t^2 \exp(-6t) \text{ J, } t \geq 0$$

$$w(t) = \int_{-\infty}^t p(x) dx = 5 \times 10^{-6} \int_{-\infty}^t \tau (1-3\tau) \exp(-6\tau) d\tau = 2,5 \times 10^{-6} t^2 \exp(-6t) \text{ J, } t \geq 0$$

Solving the integral is more complicated in this case than the operation above. However, that formula is applicable only because the initial condition was zero.

Coffee Break

C-C and L-L interconnections

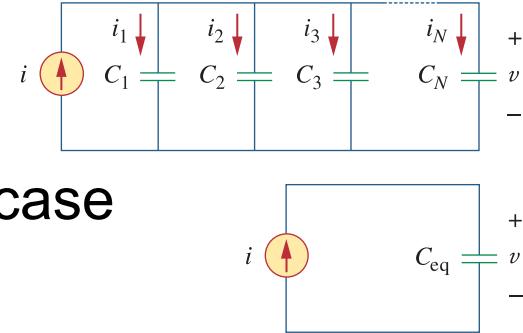
Capacitances in parallel

- Determine the equivalent capacitance in the case of several capacitances connected in parallel
- Apply KCL:

$$i = \sum_{k=1}^N i_k = \sum_{k=1}^N C_k \frac{dv}{dt} = \frac{dv}{dt} \sum_{k=1}^N C_k = C_{\text{eq}} \frac{dv}{dt}$$

- Parallel connection:

$$C_{\text{eq}} = \sum_{k=1}^N C_k$$

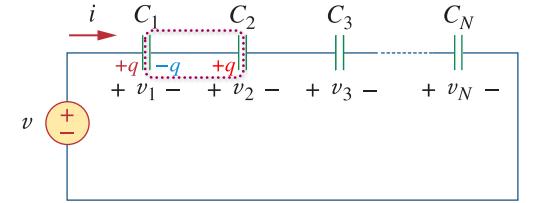
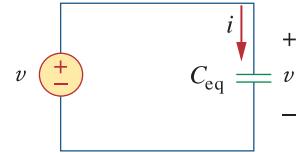


Capacitances in series

- Determine the equivalent capacitance in the case of several capacitances connected in series
- Charge distribution: $q = q_k, k = 1, \dots, N$

- Apply KVL: $v = \sum_{k=1}^N v_k \longrightarrow \frac{q}{C_{\text{eq}}} = \sum_{k=1}^N \frac{q_k}{C_k} = q \sum_{k=1}^N \frac{1}{C_k}$

- Series connection:
$$\frac{1}{C_{\text{eq}}} = \sum_{k=1}^N \frac{1}{C_k}$$

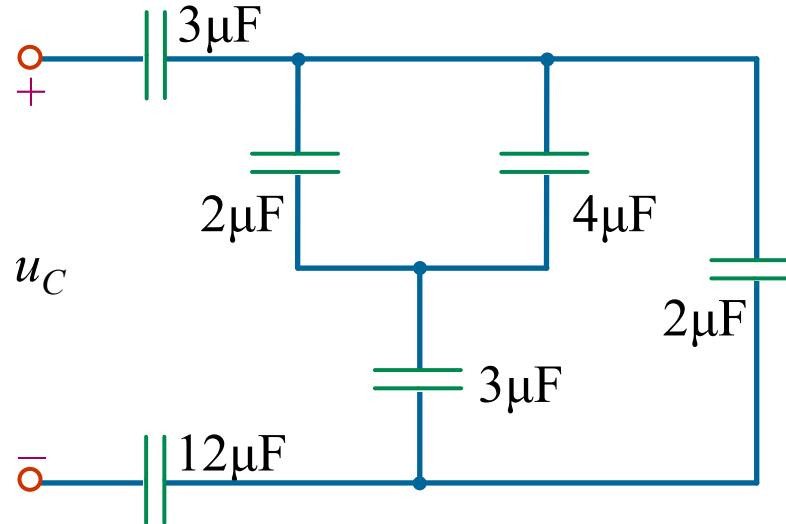


2 capacitances:

$$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$$

Capacitances: example

- Determine the equivalent capacitance of the circuit below



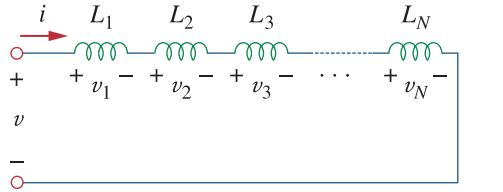
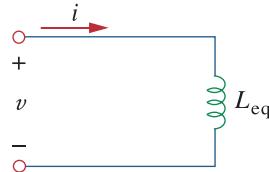
Inductances in series

- Determine the equivalent inductance in the case of several inductances connected in series
- Apply KVL:

$$v = \sum_{k=1}^N v_k = \sum_{k=1}^N L_k \frac{di}{dt} = \frac{di}{dt} \sum_{k=1}^N L_k = L_{\text{eq}} \frac{di}{dt}$$

- Series connection:

$$L_{\text{eq}} = \sum_{k=1}^N L_k$$



Inductances in parallel

- Determine the equivalent inductance in the case of several inductances connected in parallel
- Apply KCL:

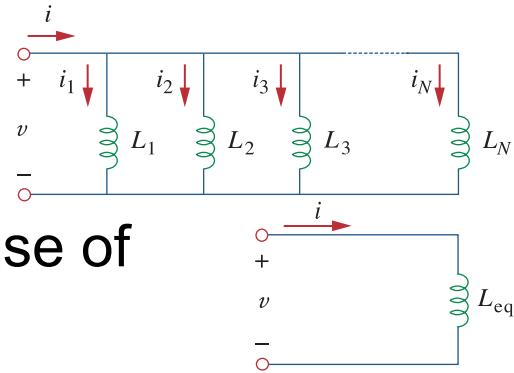
$$i = \sum_{k=1}^N i_k \quad \left| \frac{d}{dt} \right. \quad \longrightarrow \quad \frac{di}{dt} = \sum_{k=1}^N \frac{di_k}{dt} = \sum_{k=1}^N \frac{v}{L_k} = v \sum_{k=1}^N \frac{1}{L_k} = v \frac{1}{L_{eq}}$$

- Parallel connection:

$$\frac{1}{L_{eq}} = \sum_{k=1}^N \frac{1}{L_k}$$

2 inductances:

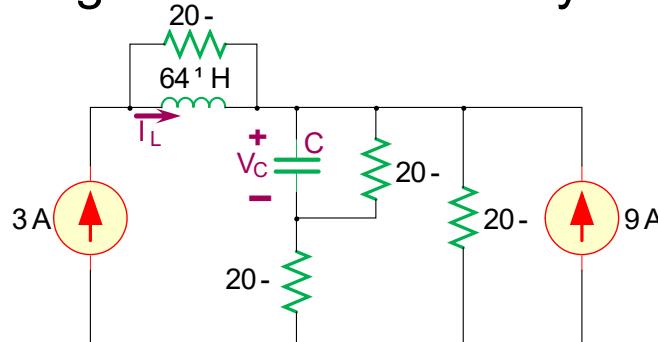
$$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$$



Exam exercise example

Exam(ple)

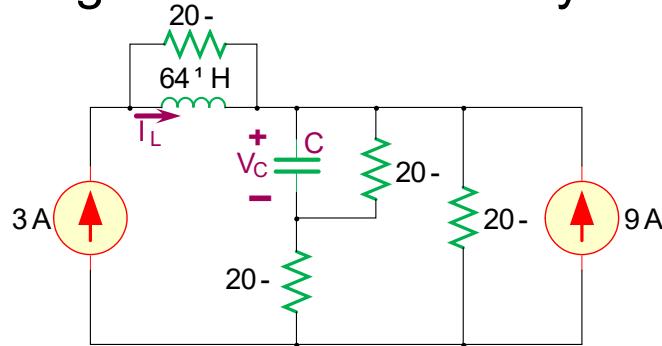
- Consider the following circuit under steady state DC conditions.



- Calculate the voltage V_C across the capacitance and current I_L through the inductance.
- Determine the value of the capacitance C so that the stored energy in the capacitor is equal to the stored energy in the inductor.

Exam(ple)

- Consider the following circuit under steady state DC conditions.

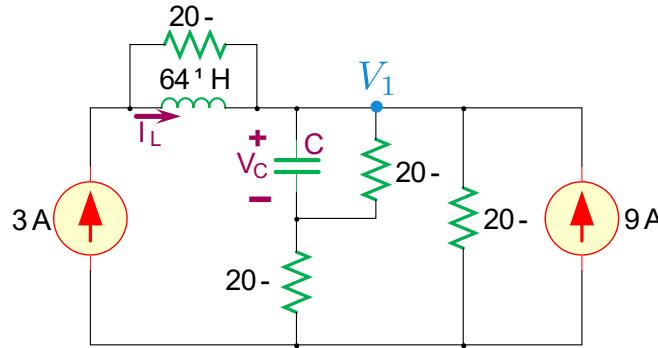


Before you start writing equations, read & look -> the 'magic words' are **under steady state DC conditions**. What happens to the capacitor and the inductor in this case?

In exam conditions I'd always advice you to **redraw** the circuit (even if the exercise does not explicitly ask for it).

Exam(ple)

a) Calculate the voltage V_C across the capacitance and current I_L through the inductance.



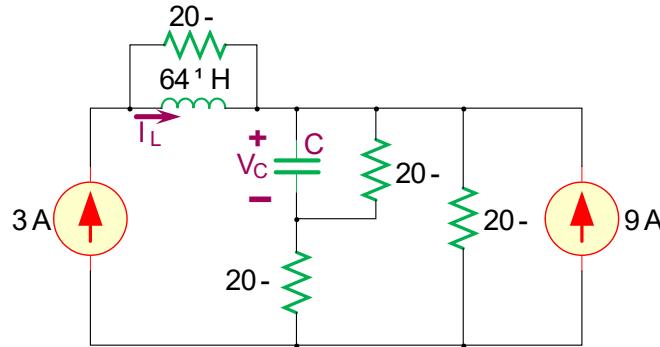
$I_L \leftarrow$ given by the 3A current source $\rightarrow I_L = 3 \text{ A}$

$$V_C \leftarrow \text{nodal analysis @ 1: } \frac{V_1}{40} + \frac{V_1}{20} = 9 + 3 \rightarrow V_1 = 160 \text{ V}$$

Voltage divider on the two 20 Ohm resistors: $V_C = 80 \text{ V}$

Exam(ple)

b) Determine the value of the capacitance C so that the stored energy in the capacitor is equal to the stored energy in the inductor.



- Equate the energies for L , I_L , C and V_C $\rightarrow \frac{L I_L^2}{2} = \frac{C V_C^2}{2}$
- Capacitance: $C = \frac{L I_L^2}{V_C^2} = \frac{64 * 10^{-3} * 9}{6400} = 0,09 * 10^{-3} = 90 \mu F$

Summary

- **Capacitance (capacitors):**

- basic relations: $q = Cv$, $i = C \frac{dv}{dt}$, $v(t) = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$
- stored energy: $w = \frac{1}{2} Cv^2(t)$, $w = \frac{q^2}{2C}$
- v at the capacitance terminals is continuous in t
- parallel: $C_{\text{eq}} = \sum_{k=1}^N C_k$ series: $\frac{1}{C_{\text{eq}}} = \sum_{k=1}^N \frac{1}{C_k}$

- **Inductance (inductors):**

- basic relations: $v = L \frac{di}{dt}$, $i(t) = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$
- stored energy: $w = \frac{1}{2} Li^2(t)$
- i through the inductance is continuous in t
- series: $L_{\text{eq}} = \sum_{k=1}^N L_k$ parallel: $\frac{1}{L_{\text{eq}}} = \sum_{k=1}^N \frac{1}{L_k}$

Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 6.1

Important characteristics of the basic elements.[†]

Relation	Resistor (R)	Capacitor (C)	Inductor (L)
$v-i$:	$v = iR$	$v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$	$v = L \frac{di}{dt}$
$i-v$:	$i = v/R$	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$
p or w :	$p = i^2R = \frac{v^2}{R}$	$w = \frac{1}{2} Cv^2$	$w = \frac{1}{2} Li^2$
Series:	$R_{\text{eq}} = R_1 + R_2$	$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\text{eq}} = L_1 + L_2$
Parallel:	$R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\text{eq}} = C_1 + C_2$	$L_{\text{eq}} = \frac{L_1 L_2}{L_1 + L_2}$
At dc:	Same	Open circuit	Short circuit
Circuit variable that cannot change abruptly:	Not applicable	v	i

Next tasks

Thank you!

My next lecture with you will be in Linear Circuits B. Success with the end-term exam and don't hesitate to contact me in case of questions!

- **SGH** (Self-Graded Homework assignments): posted today; submission due on Wednesday.
- **Seminar**: in groups on Tuesday & altogether on Friday.
- **Next week**:
 - First-order circuits with a transient (dynamic circuits)