

EE1C1 “Linear Circuits A”

Week 1.8

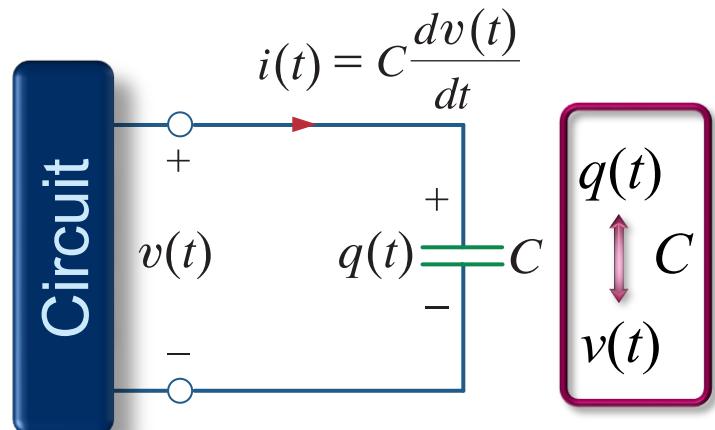
Francesco Fioranelli / Ioan E. Lager

Today

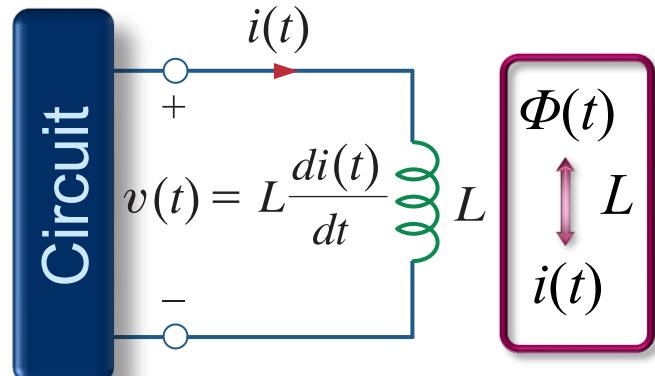
- Recap: Capacitance & capacitor; inductance & inductor; $C-C$ and $L-L$ interconnections
- New topics:
 - First-order transient circuits: RL and RC
 - Step response
 - Exam exercise example
- Summary and conclusions
- Next tasks
- Your opinion counts!

Recap of week 1.7

Capacitance / capacitors



Inductance / inductors



Transient circuits

First-order circuits – RC and RL

Transient analysis

- Thus far we only examined the ‘steady state’
 - currents and voltages are constant
- Transient analysis amounts to examining circuits when a ‘disturbance’ is induced
- It is carried out in time-domain

Transient analysis

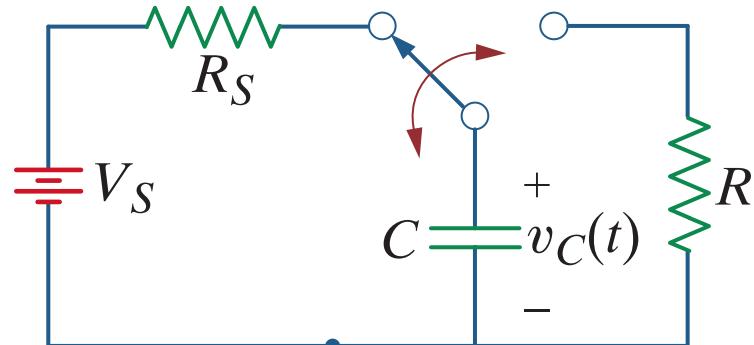
- Capacitances and inductances can store and release energy
 - abrupt changes cannot have an instantaneous effect
 - the process depends on the rest of the circuit
- Time constant:
 - indicates how fast disturbances propagate through a circuit
 - light switch \longleftrightarrow thermostat

- First-order circuits:
 - a combination of one resistance and one capacitance $\longrightarrow RC$
 - a combination of one resistance and one inductance $\longrightarrow RL$

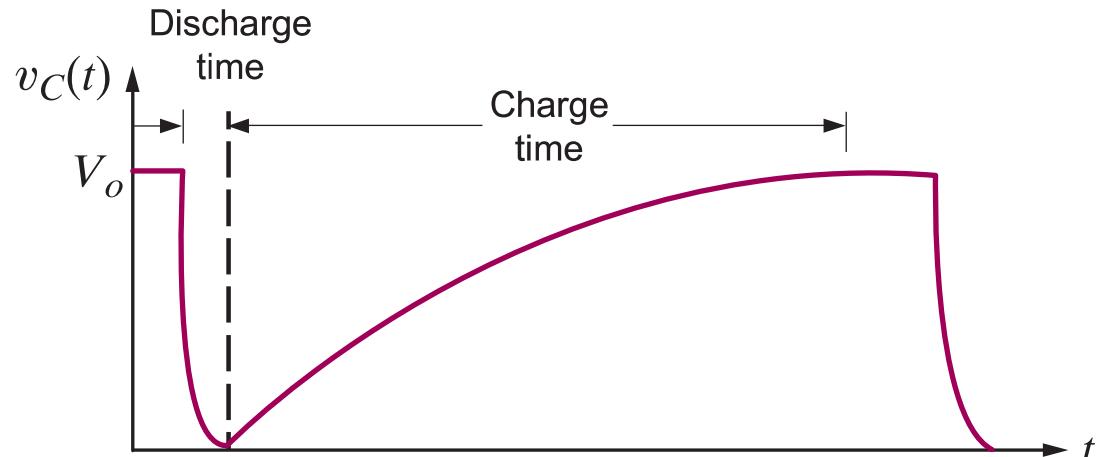
Transient analysis

- Camera with a flash

- Process:
 - charging
 - flash!
 - charging

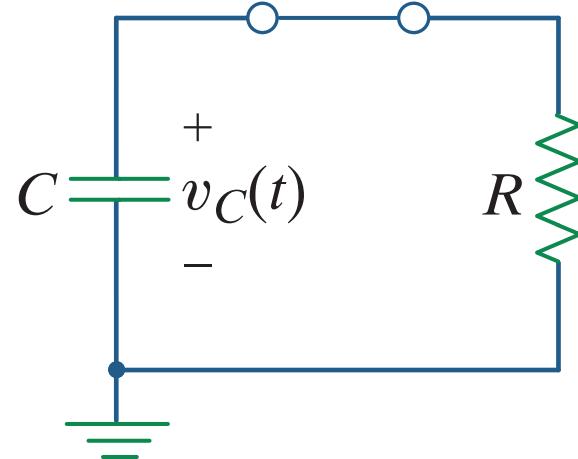


$[(R)$ Xenon lamp]



Transient analysis

- The discharge part:
 - can be construed as a capacitance that releases its energy in a resistance R



- KCL:

$$C \frac{dv_C(t)}{dt} + \frac{v_C(t)}{R} = 0 \quad \longrightarrow \quad \frac{dv_C(t)}{dt} + \frac{1}{RC} v_C(t) = 0$$

- The solution:

$$v_C(t) = V_0 e^{-t/RC}$$

Differential equations:
a math-in-a-nutshell moment

Differential equations

- Analysing such circuits amounts to solving a differential equation

$$\frac{dv_C(t)}{dt} + \frac{1}{RC} v_C(t) = 0$$

- General form:
$$\frac{dx(t)}{dt} + ax(t) = f(t)$$
- Task: find $x(t)$

Differential equations

$$\frac{dx(t)}{dt} + ax(t) = f(t)$$

Linear, differential equations with constant coefficients → it holds:

- When one knows a (particular) solution for the **general form**

$$x(t) = x_p(t) \quad p \rightarrow \text{"particular"}$$

$$\frac{dx_p(t)}{dt} + ax_p(t) = f(t)$$

- AND the solution of the **homogeneous form**

$$x(t) = x_h(t) \quad h \rightarrow \text{"homogeneous"}$$

$$\frac{dx_h(t)}{dt} + ax_h(t) = 0$$

- THEN** the complete solution of the differential equation is:

$$x(t) = x_p(t) + x_h(t)$$

Differential equations

- For the time being, we only consider constant right-hand side terms of the form $f(t) = A$

- General form:

$$\frac{dx_p(t)}{dt} + ax_p(t) = A$$

- Homogeneous form:

$$\frac{dx_h(t)}{dt} + ax_h(t) = 0$$

Differential equations

- Since the right-hand side term is constant, we may assume that the particular solution $x_p(t)$ is also constant

$$\frac{dx_p(t)}{dt} + ax_p(t) = A$$

$$x_p(t) = K_1 \quad \xrightarrow{\hspace{1cm}} \quad K_1 = \frac{A}{a}$$

Differential equations

- From the homogeneous equation it follows that:

$$\frac{dx_h(t)}{dt} + ax_h(t) = 0 \quad \xrightarrow{\quad} \quad \frac{dx_h(t)/dt}{x_h(t)} = -a \quad \xrightarrow{\quad} \quad \frac{d}{dt} [\ln x_h(t)] = -a$$

c collects constants from both sides

- Consequently:

$$\ln x_h(t) = -at + c$$

$$x_h(t) = K_2 e^{-at}$$

$$K_2 = e^c$$

Differential equations

- Combining the two solutions: $x_p(t) = K_1 = \frac{A}{a}$ & $x_h(t) = K_2 e^{-at}$

$$x(t) = x_p(t) + x_h(t) = \frac{A}{a} + K_2 e^{-at}$$

- K_2 can be determined if we knew $x(t)$ at a given moment
- Problem solved!

Differential equations

- In general, we can express the solution of our first-order differential equation as

$$x(t) = K_1 + K_2 e^{-t/\tau}$$

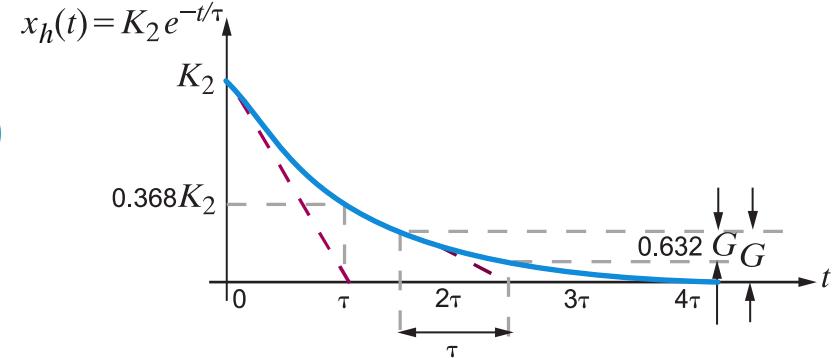
- K_1 is the “steady-state” or the stationary solution for $t \rightarrow \infty$
- τ is the circuit’s **time constant** it measures how fast the second term vanishes

Differential equations: time constant

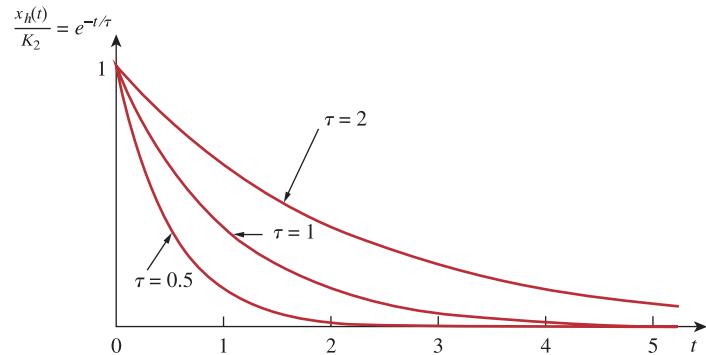
- After each τ , the quantity $x_h(t)$ drops by e (Euler's number)

$$\text{Values of } x_h(t)/K_2 = e^{-t/\tau}$$

t	$x_h(t)/K_2$
τ	0.36788
2τ	0.13534
3τ	0.04979
4τ	0.01832
5τ	0.00674



- The smaller the time constant τ , the more abrupt the transition



Method 1: Differential equations

+ examples

Algorithm

- Write the KCL/KVL equations pertaining to
 - the voltage over the capacitance
 - the current through the inductance
- Fill in the generic solution:

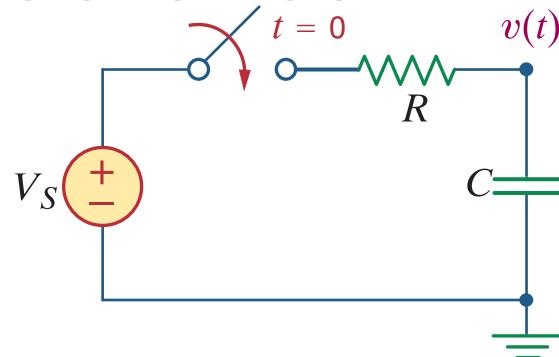
$$x(t) = K_1 + K_2 e^{-t/\tau}$$

- Identify the coefficients and make use of the initial values

Example 1: loading of a capacitance

- KCL: $C \frac{dv(t)}{dt} + \frac{v(t) - V_s}{R} = 0$

$$\frac{dv(t)}{dt} + \frac{v(t)}{RC} = \frac{V_s}{RC}$$



- Fill in the generic solution:

$$x(t) = K_1 + K_2 e^{-t/\tau}$$

$$-\frac{K_2}{\tau} e^{-t/\tau} + \frac{K_1}{RC} + \frac{K_2}{RC} e^{-t/\tau} = \frac{V_s}{RC}$$

Example 1: loading of a capacitance

$$-\frac{K_2}{\tau} e^{-t/\tau} + \frac{K_1}{RC} + \frac{K_2}{RC} e^{-t/\tau} = \frac{V_s}{RC}$$

- The constant terms and the coefficients in the exponentials are:

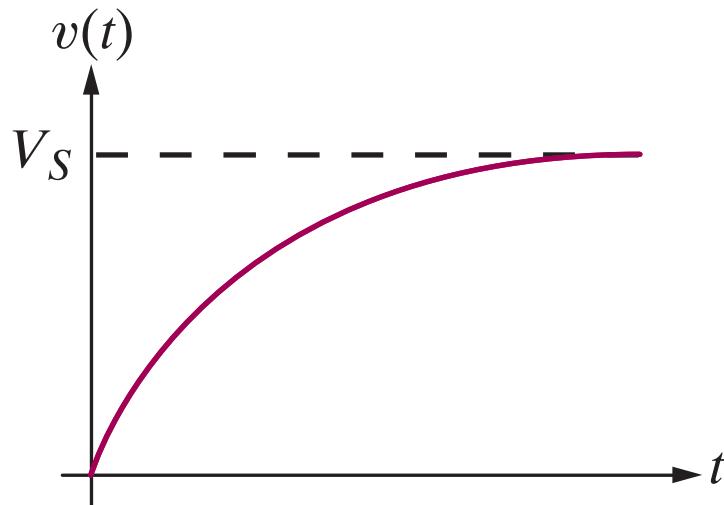
$$K_1 = V_s \quad \text{and} \quad \tau = RC$$

- Thus: $v(t) = V_s + K_2 e^{-\frac{t}{RC}}$
- K_2 follows by observing the initial condition: the voltage over the capacitance is zero at $t = 0 \rightarrow K_2 = -V_s$
- We can now conclude that: $v(t) = V_s - V_s e^{-t/RC} = V_s(1 - e^{-t/RC})$

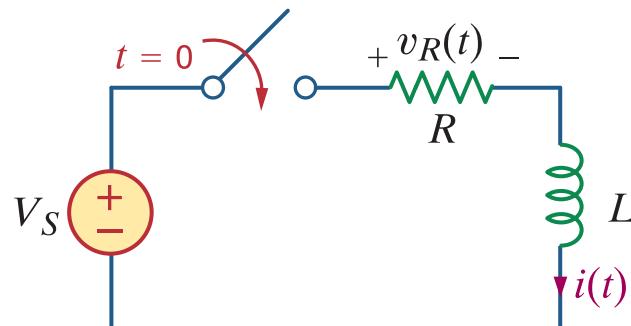
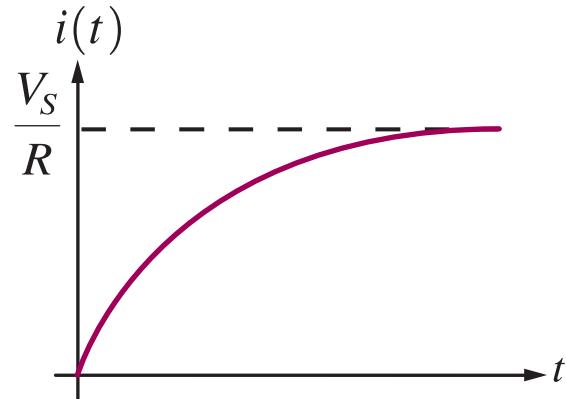
Example 1: loading of a capacitance

- Plot of the solution

$$v(t) = V_S (1 - e^{-t/RC})$$



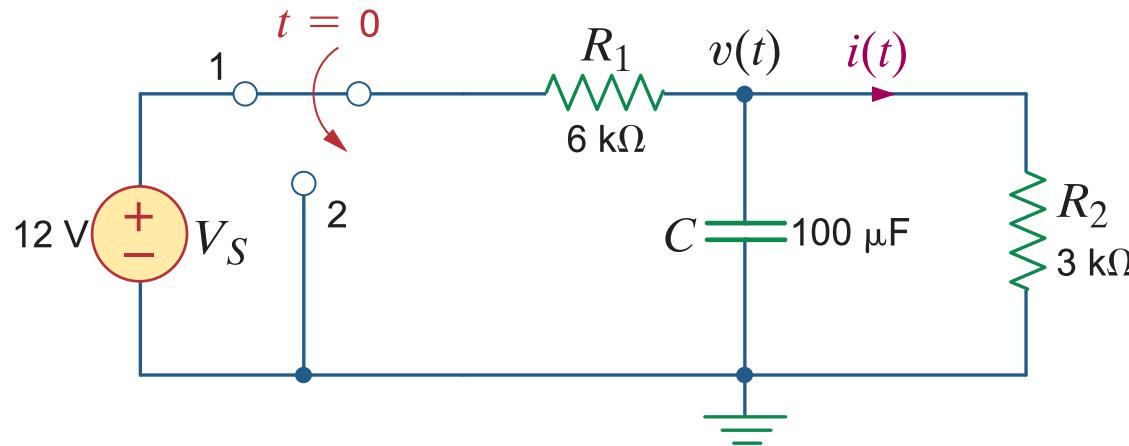
RL circuit: practically the same



$$i(t) = \frac{V_S}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

Example 2: discharge of a capacitance

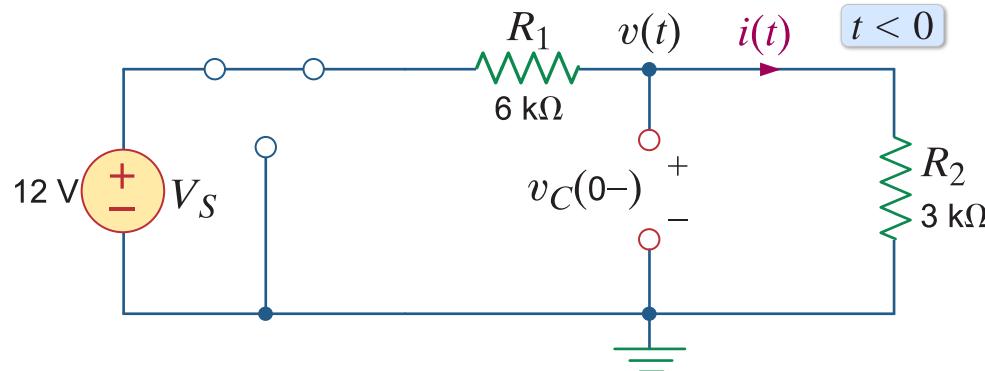
- The switch is taken to have been for very long in position 1



- Determine the current $i(t)$ for $t > 0$

Example 2: discharge of a capacitance

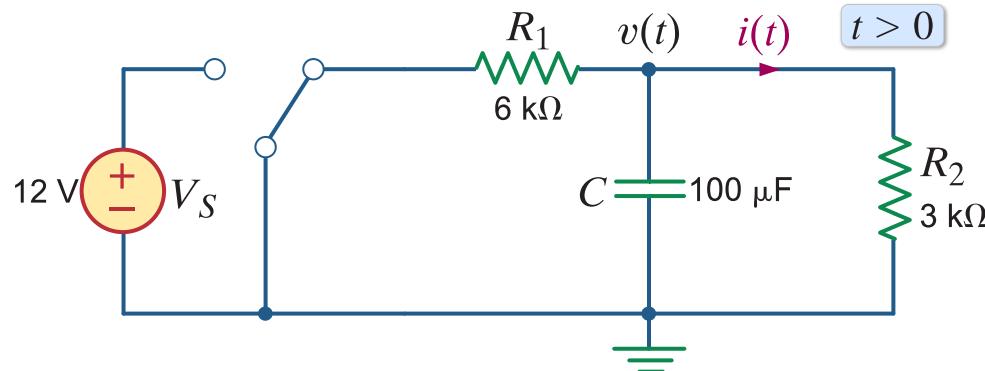
- For $t \uparrow 0$ we have:



- The capacitance is fully charged \rightarrow the current is zero
- The initial voltage is: $v(0-) = 12 \left(\frac{3k}{6k + 3k} \right) = 4 \text{ V}$

Example 2: discharge of a capacitance

- For $t > 0$ we have:



- KCL: $\frac{v(t)}{R_1} + C \frac{dv(t)}{dt} + \frac{v(t)}{R_2} = 0$
- With the given values: $\frac{dv(t)}{dt} + 5v(t) = 0$

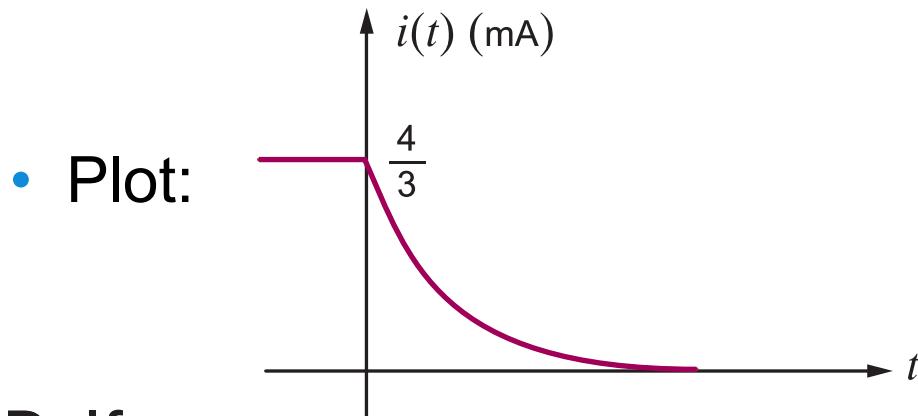
- $R_1 = 6 \text{ k}\Omega$
- $R_2 = 3 \text{ k}\Omega$
- $C = 100 \mu\text{F}$

Example 2: discharge of a capacitance

- This is a homogeneous equation: $\frac{dv(t)}{dt} + 5v(t) = 0$
- The solution reads: $v(t) = K_2 e^{-t/\tau}$
- Filling in the values yields: $v(t) = K_2 e^{-t/0.2}$ V

Example 2: discharge of a capacitance

- Filling in the initial voltage $v(0^-) = 4V \longrightarrow v(t) = 4e^{-t/0.2} V$
- Thus, the current is: $i(t) = \frac{v(t)}{R_2} \longrightarrow i(t) = \frac{4}{3} e^{-t/0.2} \text{ mA}$



Method 2: Algorithmic

+ example

Algorithm

- 1) Assume that the solution has the form: $x(t) = K_1 + K_2 e^{-t/\tau}$
- 2) Assume that the circuit is in 'steady state' before the change occurs → express the current through L or the voltage across C **just before** the switch switches
- 3) Make use of the fact that the current or the voltage cannot be discontinuous: $v_C(0+) = v_C(0-)$
 $i_L(0+) = i_L(0-)$

Algorithm

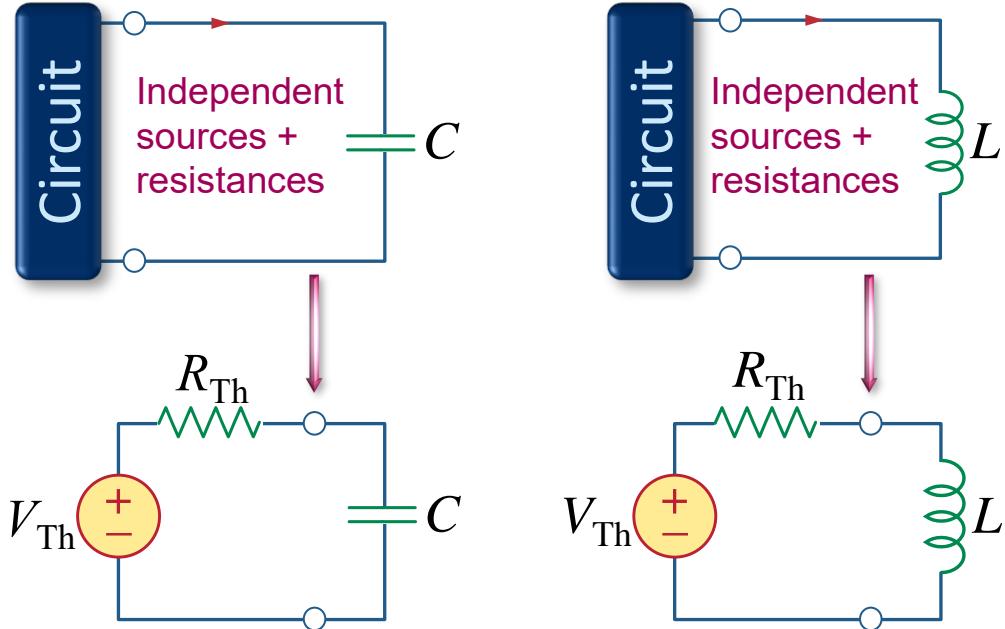
4) Redraw the circuit in the new ‘steady state’ that holds for $t \rightarrow \infty \rightarrow$ practically, this applies for $t > 5\tau \rightarrow$ solve the new circuit $\rightarrow x(t)|_{t>5\tau} = x(\infty)$

5) The time constant holds for all currents and voltages ?

It is then easier to reduce the circuit to a voltage source, a resistance and a reactive element (capacitance or inductance) \rightarrow the Thévenin equivalent at the reactive element’s terminals: $\tau = R_{Th}C$ and $\tau = L/R_{Th}$

Algorithm

- Assume that “Circuit” contains only independent sources & resistances
- It can be replaced by its Thévenin equivalent
- The canonical RC or RL circuits!



standard solution

Algorithm

6) The constants at step 1 are now determined via the results from the steps 3, 4 and 5 $x(0+) = K_1 + K_2$ and $x(\infty) = K_1$

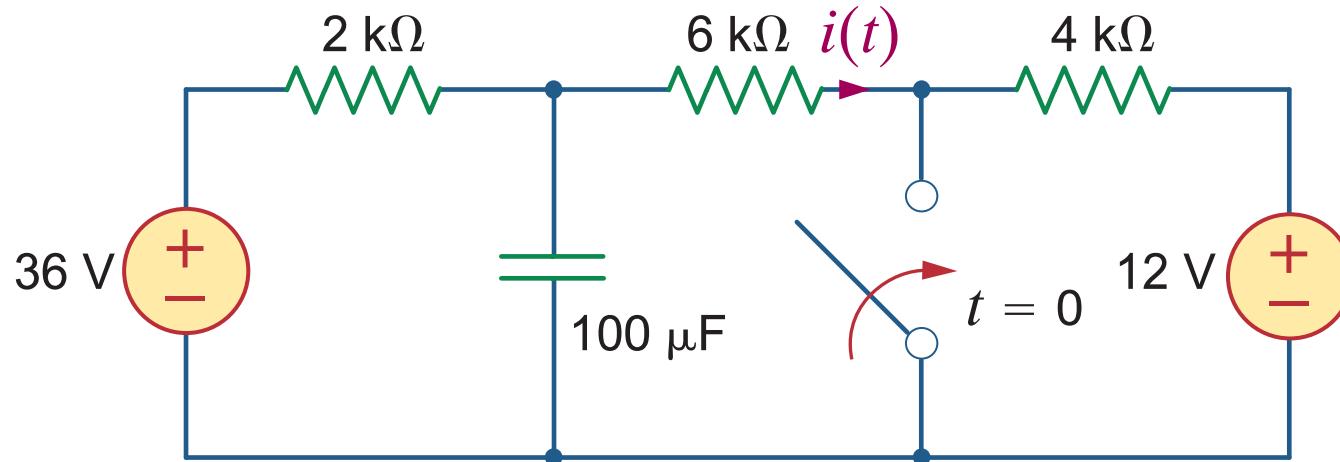
This entails $K_1 = x(\infty)$ and $K_2 = x(0+) - x(\infty)$

The final solution is: $x(t) = x(\infty) + [x(0+) - x(\infty)] e^{-t/\tau}$

Initial – final values formula

Example 3: complex circuit

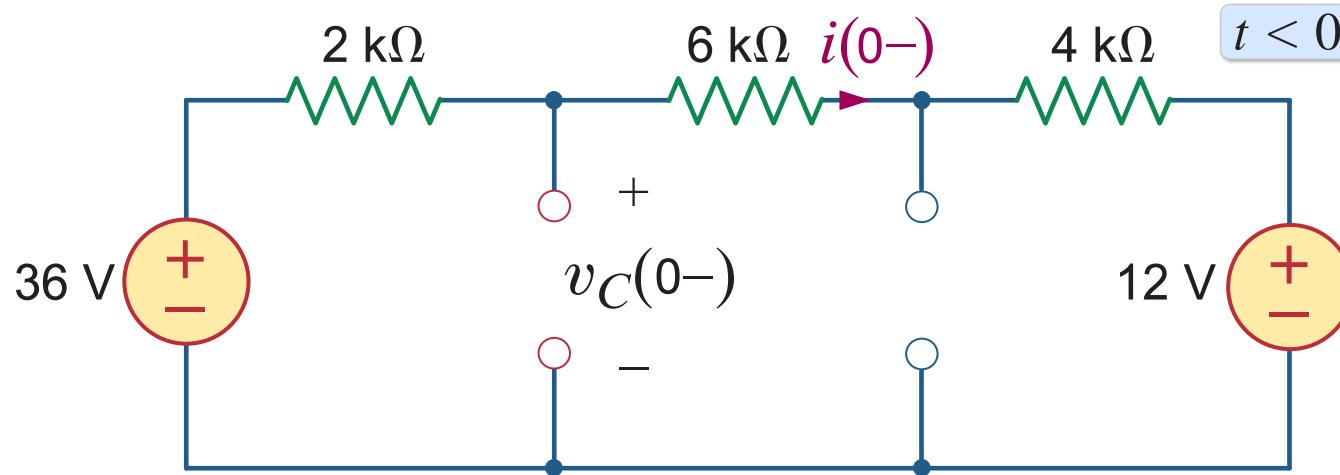
- Determine the current $i(t)$ for $t > 0$



- STEP 1: $i(t)$ is of the form: $i(t) = K_1 + K_2 e^{-t/\tau}$

Example 3: complex circuit

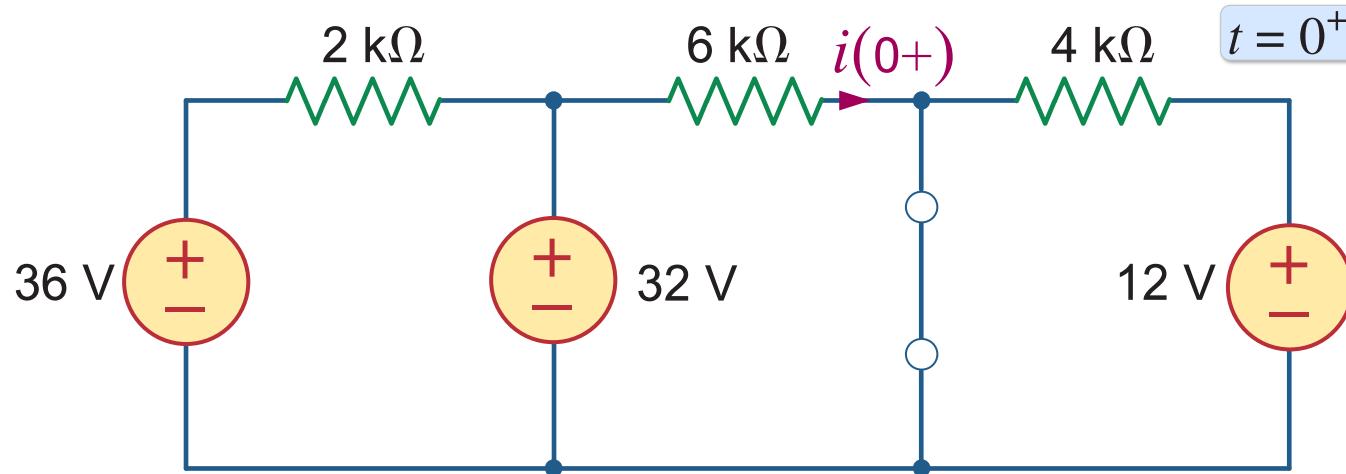
- STEP 2: Draw the circuit just before the switching moment



$$v_C(0-) = 36 - (2k)(2m) = 32 \text{ V}$$

Example 3: complex circuit

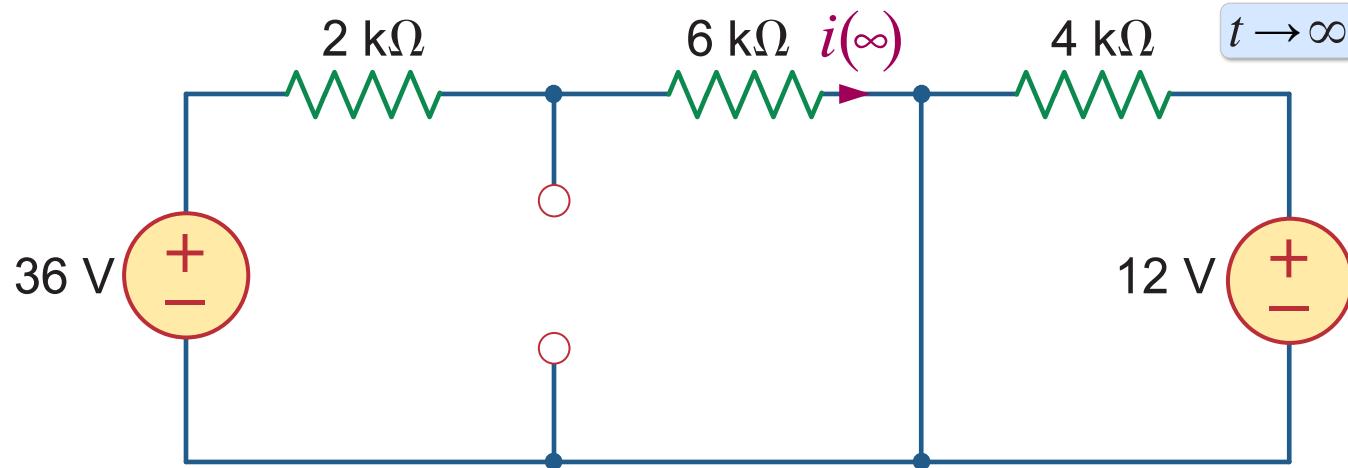
- STEP 2: Draw the circuit **just after** the switching moment



$$i(0+) = \frac{32}{6k} = \frac{16}{3} \text{ mA}$$

Example 3: complex circuit

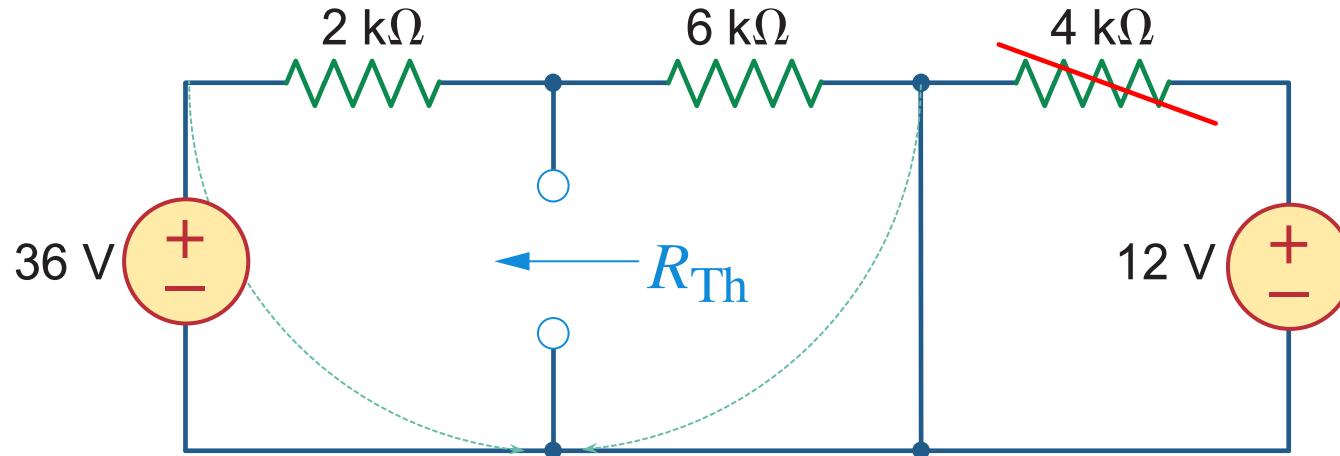
- STEP 4: The circuit in 'steady state', valid for $t > 5\tau$



$$i(\infty) = \frac{36}{2k + 6k} = \frac{9}{2} \text{ mA}$$

Example 3: complex circuit

- STEP 5: Determine R_{Th} at the capacitor's terminals



$$R_{Th} = \frac{(2k)(6k)}{2k + 6k} = \frac{3}{2} \text{ k}\Omega \quad \longrightarrow \quad \tau = R_{Th}C = \left(\frac{3}{2}\right)(10^3)(100)(10^{-6}) = 0.15 \text{ s}$$

Example 3: complex circuit

- **STEP 6:** Make use of the steps 3, 4 and 5

$$K_1 = i(\infty) = \frac{9}{2} \text{ mA}$$

$$K_2 = i(0+) - i(\infty) = i(0+) - K_1 = \frac{16}{3} - \frac{9}{2} = \frac{5}{6} \text{ mA}$$

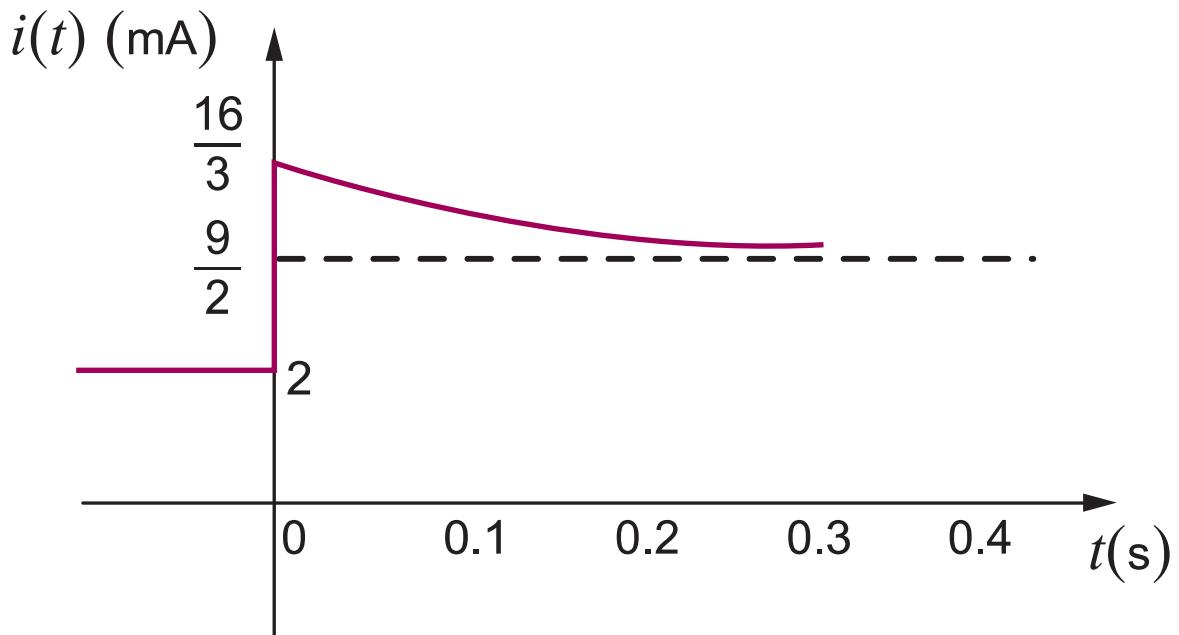
- Hence, it follows that:

$$i(t) = \frac{9}{2} + \frac{5}{6} e^{-t/0.15} \text{ mA}$$

Example 3: complex circuit

- Plot of $i(t)$

$$i(t) = \frac{9}{2} + \frac{5}{6} e^{-t/0.15} \text{ mA}$$



Step response

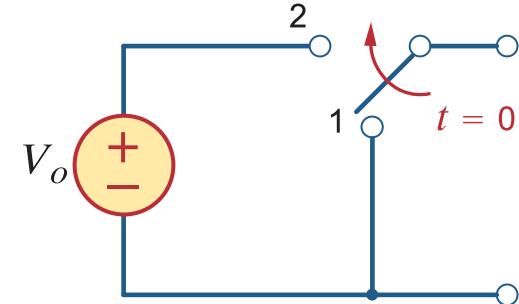
Step response

- Examples thus far: abruptly turning on or off a voltage or a current source
- Mathematical model: a unit step function

$$u(t) = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t > 0 \end{cases}$$

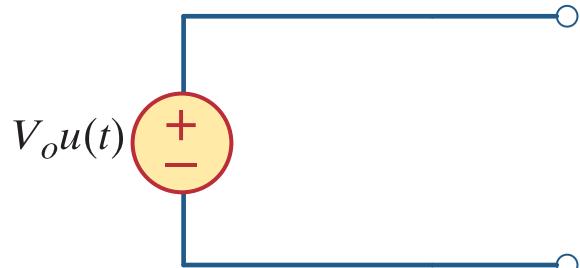
Step response

- In a circuit: a voltage source + a switch



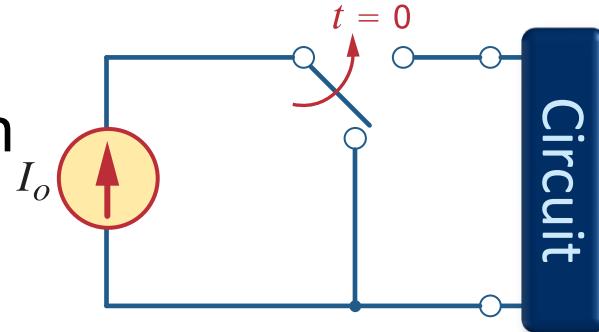
- = a voltage source $V_0 u(t)$:

$$u(t) = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t > 0 \end{cases}$$



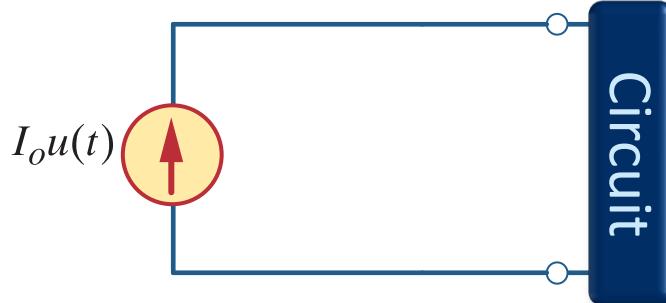
Step response

- In a circuit: a current source + a switch



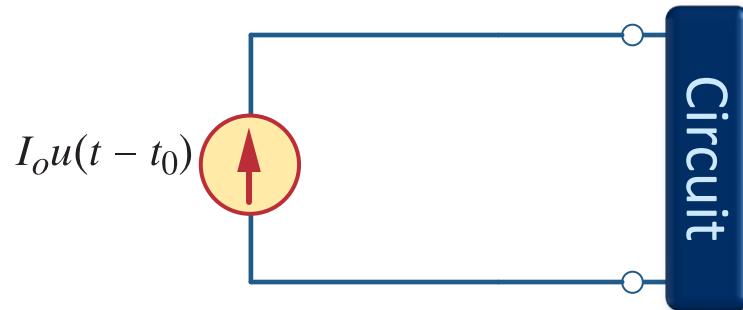
- = a current source $I_o u(t)$:

$$u(t) = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t > 0 \end{cases}$$



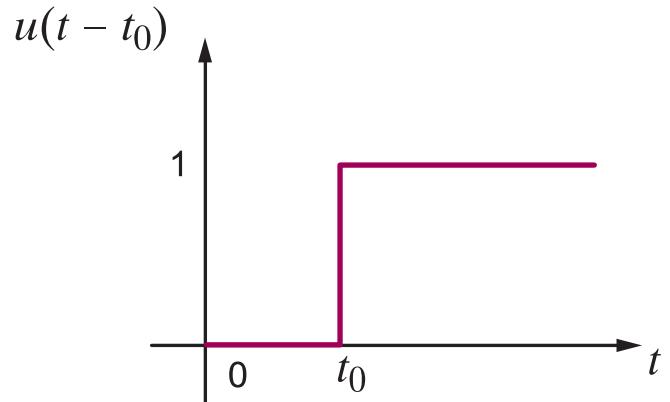
Step response

- A time shift can be added:



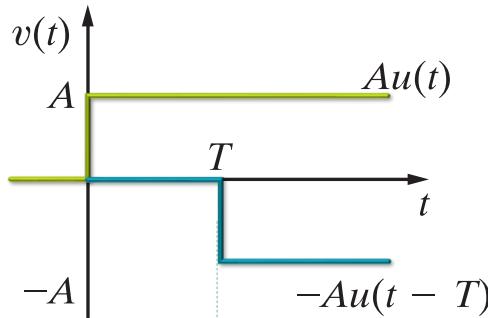
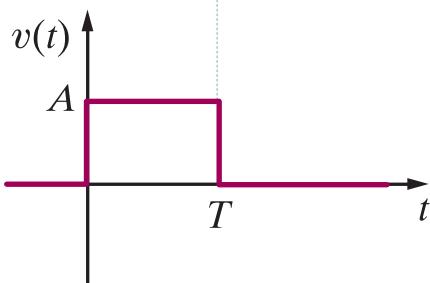
- The unit step function becomes:

$$u(t - t_0) = \begin{cases} 0 & \text{for } t < t_0 \\ 1 & \text{for } t > t_0 \end{cases}$$



Step response

- With two unit step functions one can synthesise a pulse



$$v(t) = A[u(t) - u(t - T)]$$

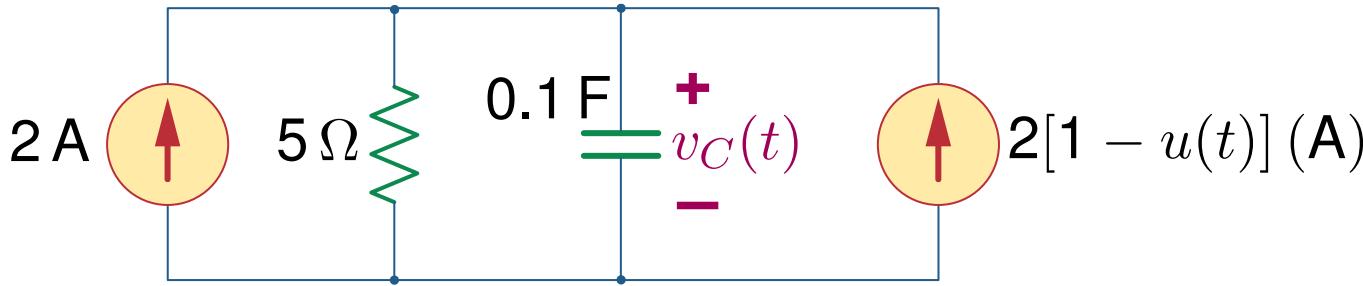
Or time-shifted by t_0 :

$$v(t) = A\{u(t - t_0) - u[t - (t_0 + T)]\}$$

Exam exercise example

Exam(ple)

- Consider the following circuit:

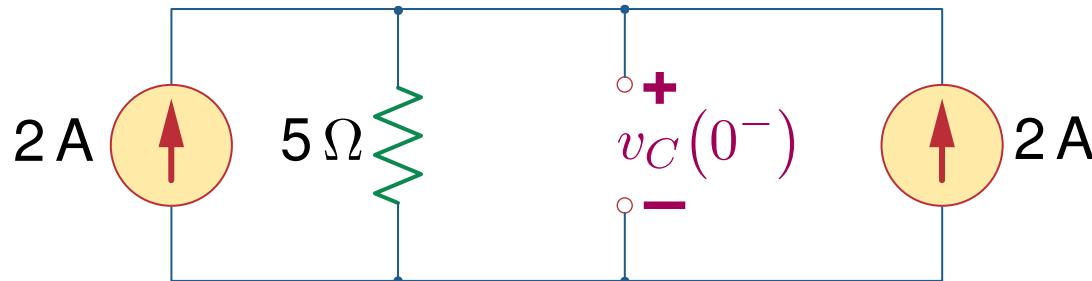


- Determine $v_C(0+)$.
- Determine $v_C(t)$ for $t > 0 \text{ s}$.

Exam(ple)

a) Determine $v_C(0^+)$.

- Redraw the circuit for $t < 0$:



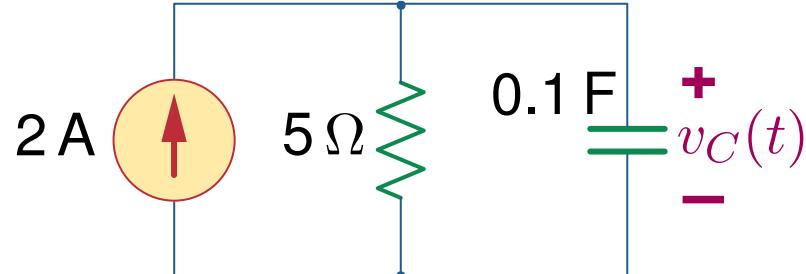
- Calculate the voltage $v_C(0^-)$: $v_C(0^-) = (2 + 2)5 = 20$ (V)
- Apply the continuity conditions at $t = 0$:

$$v_C(0^+) = v_C(0^-) = 20 \text{ (V)}$$

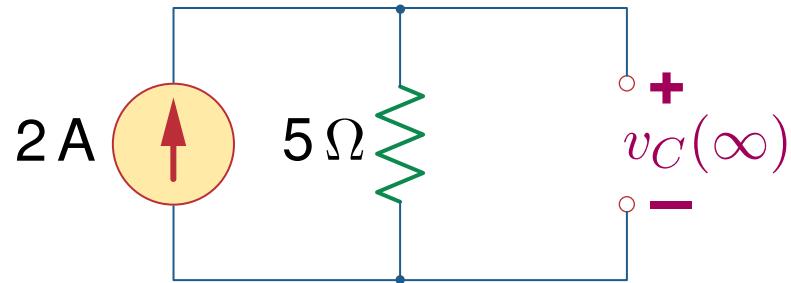
Exam(ple)

b) Determine $v_C(t)$ for $t > 0$ s.

- Redraw the circuit for $t > 0$:



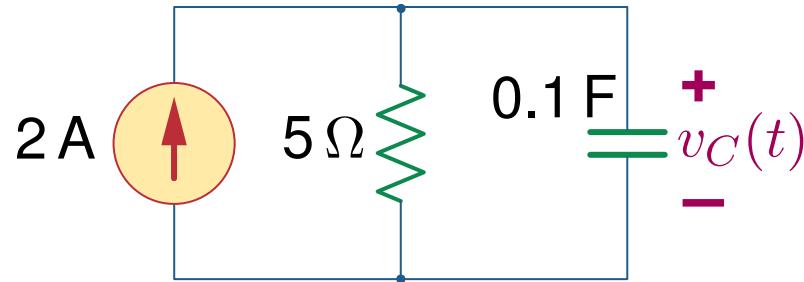
- Redraw the circuit for $t \rightarrow \infty$:



- Calculate $v_C(\infty)$: $v_C(\infty) = 2 \cdot 5 = 10$ (V)

Exam(ple)

b) Determine $v_C(t)$ for $t > 0$ s.



- Calculate the Thévenin resistance: $R_{\text{Th}} = 5 \Omega$
- Calculate the time constant: $\tau = R_{\text{Th}}C = 0.5 \text{ (s)}$
- Assemble $v_C(t)$ via the initial-final values formula:

$$\begin{aligned}v_C(t) &= v_C(\infty) + [v_C(0^+) - v_C(\infty)] \exp(-t/\tau) \\&= 10 (1 + e^{-2t}) \text{ (V)}\end{aligned}$$

Summary of the day

- First-order transient circuits:
 - always one capacitance or one inductance
 - can contain more resistances and/or sources
- The solution can be derived via:
 - differential equation techniques + identifying coefficients
 - an algorithm
- Step response:
 - step function $u(t)$
 - pulses can be assembled by combining 2 step functions

Next tasks

- Please do the SGH6
- Seminars of Tuesday and Friday
- Register for the end-of-term exam!
- Next week: second-order circuits

Thank you!

Your opinion counts!

- The course management and we are highly interested in your feedback on the course → let us know what you think about the methods of education, assessment, organisation, etc.
- We are also interested in your opinion on the Circuits Course Labs
- Please go to: <https://evasys-survey.tudelft.nl/evasys/online.php?p=4EXUN>,

or scan the QR-code

Many thanks in advance for your feedback!

The results will be published on Brightspace
Questions: QualityAssurance-EEMCS@tudelft.nl