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Today

• Recap: Capacitance & capacitor; inductance & 
inductor; C{C and L{L interconnections 

• New topics:

– First-order transient circuits: RL and RC   

– Step response

– Exam exercise example 

• Summary and conclusions

• Next tasks

• Your opinion counts!
EE1C1 “Linear Circuits A”: week 1.8
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Recap of week 1.7

EE1C1 “Linear Circuits A”: week 1.8
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Transient circuits

  First-order circuits – RC and RL 

EE1C1 “Linear Circuits A”: week 1.8



6

Transient analysis

• Thus far we only examined the ‘steady state’

– currents and voltages are constant

• Transient analysis amounts to examining circuits when a 

‘disturbance’ is induced

• It is carried out in time-domain

EE1C1 “Linear Circuits A”: week 1.8
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Transient analysis

EE1C1 “Linear Circuits A”: week 1.8

• Capacitances and inductances can store and release energy

– abrupt changes cannot have an instantaneous effect

– the process depends on the rest of the circuit

• Time constant:

– indicates how fast disturbances propagate through a circuit

– light switch                     thermostat

• First-order circuits:

– a combination of one resistance and one capacitance           RC

– a combination of one resistance and one inductance           RL
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Transient analysis

• Camera with a flash

• Process:

– charging

– flash!

– charging

EE1C1 “Linear Circuits A”: week 1.8
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Transient analysis

• The discharge part:

– can be construed as a capacitance that 
releases its energy in a resistance R

• KCL:

• The solution:

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations

• Analysing such circuits amounts to 

solving a differential equation

• General form:

• Task: find x(t)
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Differential equations

Linear, differential equations with constant coefficients

• When one knows a (particular) solution for the general form

x(t) = xp(t)

• AND the solution of the homogeneous form

x(t) = xh(t)

• THEN the complete solution of the differential equation is:

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations

• For the time being, we only consider constant right-hand 
side terms of the form f(t) = A 

• General form:

• Homogeneous form:

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations

• Since the right-hand side term is constant, we may 
assume that the particular solution xp(t) is also constant

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations

• From the homogeneous equation it follows that:

• Consequently:

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations

• Combining the two solutions:

• K2 can be determined if we knew x(t) at a given moment

• Problem solved!

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations

• In general, we can express the solution of our first-order 

differential equation as

• K1 is the “steady-state” or the stationary solution for t ! 1 

• ¿ is the circuit’s time constant          it measures how fast 

the second term vanishes

EE1C1 “Linear Circuits A”: week 1.8
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Differential equations: time constant
• After each ¿, the quantity       

xh(t) drops by e (Euler’s number)

• The smaller the time constant ¿, 

the more abrupt the transition

EE1C1 “Linear Circuits A”: week 1.8

Values of h

h

h

h



19

Method 1: Differential equations

     + examples

EE1C1 “Linear Circuits A”: week 1.8
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Algorithm

• Write the KCL/KVL equations pertaining to

– the voltage over the capacitance

– the current through the inductance

• Fill in the generic solution:

• Identify the coefficients and make use of the initial values

EE1C1 “Linear Circuits A”: week 1.8
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Example 1: loading of a capacitance

• KCL:

• Fill in the generic solution:

EE1C1 “Linear Circuits A”: week 1.8
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Example 1: loading of a capacitance

• The constant terms and the coefficients in the exponentials are:

• Thus:

• K2 follows by observing the initial condition: the voltage over the 

capacitance is zero at t = 0

• We can now conclude that:
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Example 1: loading of a capacitance

• Plot of the solution

EE1C1 “Linear Circuits A”: week 1.8
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RL circuit: practically the same 

EE1C1 “Linear Circuits A”: week 1.8
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Example 2: discharge of a capacitance

• The switch is taken to have been for very long in position 1

• Determine the current i(t) for t > 0

EE1C1 “Linear Circuits A”: week 1.8
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Example 2: discharge of a capacitance

• For t " 0 we have:

• The capacitance is fully charged       the current is zero

• The initial voltage is:

EE1C1 “Linear Circuits A”: week 1.8
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Example 2: discharge of a capacitance

• For t > 0 we have:

• KCL:

• With the given values:

EE1C1 “Linear Circuits A”: week 1.8

• R1 = 6 kΩ 

• R2 = 3 kΩ 
• C = 100 μF
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Example 2: discharge of a capacitance

• This is a homogeneous equation:

• The solution reads:

• Filling in the values yields:
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Example 2: discharge of a capacitance

• Filling in the initial voltage v(0{) = 4V

• Thus, the current is:

• Plot:
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Method 2: Algorithmic

     + example

EE1C1 “Linear Circuits A”: week 1.8
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Algorithm

1) Assume that the solution has the form:

2) Assume that the circuit is in ‘steady state’ before the 
change occurs      express the current through L or the 

voltage across C just before the switch switches

3) Make use of the fact that the current or the voltage 

cannot be discontinuous:
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Algorithm
4) Redraw the circuit in the new ‘steady state’ that holds 

for t ! 1       practically, this applies for t > 5¿      solve 

the new circuit

5) The time constant holds for all currents and voltages

It is then easier to reduce the circuit to a voltage source, 

a resistance and a reactive element (capacitance or 

inductance)       the Thévenin equivalent at the reactive 

element’s terminals:                and

EE1C1 “Linear Circuits A”: week 1.8
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Algorithm

• Assume that “Circuit”                                                                    

contains only                                                                                  

independent sources                                                                               

& resistances

• It can be replaced by                                                                   

its Thévenin equivalent

• The canonical RC or RL circuits! 

EE1C1 “Linear Circuits A”: week 1.8
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Algorithm
6) The constants at step 1 are now determined via the 

results from the steps 3, 4 and 5                                 

and

This entails                  and

The final solution is:

EE1C1 “Linear Circuits A”: week 1.8
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Example 3: complex circuit
• Determine the current i(t) for t > 0 

• STEP 1: i(t) is of the form:

EE1C1 “Linear Circuits A”: week 1.8
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Example 3: complex circuit
• STEP 2: Draw the circuit just before the switching moment

EE1C1 “Linear Circuits A”: week 1.8

vC(0-) = 36 – (2k)(2m) = 32 V 
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Example 3: complex circuit
• STEP 2: Draw the circuit just after the switching moment

EE1C1 “Linear Circuits A”: week 1.8
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Example 3: complex circuit
• STEP 4: The circuit in ‘steady state’, valid for t > 5¿ 

EE1C1 “Linear Circuits A”: week 1.8
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Example 3: complex circuit
• STEP 5: Determine RTh at the capacitor’s terminals

EE1C1 “Linear Circuits A”: week 1.8

( ) ( )2 6 3
  kΩ

2 6 2
Th

k k
R

k k
= =

+
( )( )( )3 63
10 100 10 0.15  s

2
ThR C − 

= = = 
 



41

Example 3: complex circuit

• STEP 6: Make use of the steps 3, 4 and 5

• Hence, it follows that:

EE1C1 “Linear Circuits A”: week 1.8
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Example 3: complex circuit

• Plot of i(t)

EE1C1 “Linear Circuits A”: week 1.8
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Step response

EE1C1 “Linear Circuits A”: week 1.8
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Step response

• Examples thus far: abruptly turning on or off a voltage or 

a current source

• Mathematical model: a unit step function

EE1C1 “Linear Circuits A”: week 1.8
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Step response

• In a circuit: a voltage source + a switch

• = a voltage source V0 u(t):

EE1C1 “Linear Circuits A”: week 1.8
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Step response

• In a circuit: a current source + a switch

• = a current source I0 u(t):

EE1C1 “Linear Circuits A”: week 1.8
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Step response

• A time shift can be added:

• The unit step function becomes:

EE1C1 “Linear Circuits A”: week 1.8
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Step response

• With two unit step functions one can synthesise a pulse

EE1C1 “Linear Circuits A”: week 1.8

Or time-shifted by t0:
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Exam exercise example

EE1C1 “Linear Circuits A”: week 1.8
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Exam(ple)

• Consider the following circuit:

a) Determine vC(0+).

b) Determine vC(t) for t > 0 s.

EE1C1 “Linear Circuits A”: week 1.8
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Exam(ple)

a) Determine vC(0+).

• Redraw the circuit for t < 0:

• Calculate the voltage vC(0
{):

• Apply the continuity conditions at t = 0:

EE1C1 “Linear Circuits A”: week 1.8
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Exam(ple)

b) Determine vC(t) for t > 0 s.

• Redraw the circuit for t > 0:

• Redraw the circuit for t ! 1:

• Calculate vC(1):

EE1C1 “Linear Circuits A”: week 1.8
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Exam(ple)

b) Determine vC(t) for t > 0 s.

• Calculate the Thévenin resistance:

• Calculate the time constant:

• Assemble vC(t) via the initial-final values formula:

EE1C1 “Linear Circuits A”: week 1.8
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Summary of the day

• First-order transient circuits:

– always one capacitance or one inductance

– can contain more resistances and/or sources

• The solution can be derived via:

– differential equation techniques + identifying coefficients

– an algorithm

• Step response:

– step function u(t) 

– pulses can be assembled by combining 2 step functions

EE1C1 “Linear Circuits A”: week 1.8
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Next tasks

• Please do the SGH6

• Seminars of Tuesday and Friday

• Register for the end-of-term exam!

• Next week: second-order circuits

Thank you!

EE1C1 “Linear Circuits A”: week 1.8
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Your opinion counts!
• The course management and we are highly interested in your 

feedback on the course → let us know what you think about the 

methods of education, assessment, organisation, etc.

• We are also interested in your opinion on the Circuits Course Labs

• Please go to: https://evasys-survey.tudelft.nl/evasys/online.php?p=4EXUN, 

   

      or scan the QR-code

EE1C1 “Linear Circuits A”: week 1.8

Many thanks in advance for your feedback!

The results will be published on Brightspace 

Questions: QualityAssurance-EEMCS@tudelft.nl
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