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Today

* Recap: Capacitance & capacitor; inductance &
inductor; C—C and L—L interconnections

New topics:
— First-order transient circuits: RL and RC

— Step response
— Exam exercise example

Summary and conclusions
Next tasks
Your opinion counts!
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Recap of week 1.7

Capacitance / capacitors Inductance / inductors
0= (1
! 19 ! 4o D(1)
o) q()==cC ﬂ C () = L;—t L ﬂ L
_ ) W(?) - i(?)
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Transient circuits

First-order circuits — RC and RL

%
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Transient analysis

« Thus far we only examined the ‘steady state’
— currents and voltages are constant

» Transient analysis amounts to examining circuits when a
‘disturbance’ is induced

e ltis carried out in time-domain

%
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Transient analysis

« Capacitances and inductances can store and release energy
— abrupt changes cannot have an instantaneous effect
— the process depends on the rest of the circuit

* Time constant:
— indicates how fast disturbances propagate through a circuit
— light switch \ﬁ%ﬁthermostat ?

f 0 . .

* First-order circuits:
— a combination of one resistance and one capacitance == R(C'
— a combination of one resistance and one inductance == RL

(‘ _
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= Vg +
C ——vcl(?)

O
Transient analysis M :
R

« Camera with a flash

[(R) Xenon lamp]

Discharge
time

* Process: ve(?) |
— charging v,

Charge ‘
time

> le

2\

I
I
— flash! §Wé |
— charging :

]
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Transient analysis
_|_

» The discharge part: C—==2c() R

— can be construed as a capacitance that N

releases its energy in a resistance R ¢
« KCL: —
C dv,.(t) LY (1) _0 dv,.(t) N 1 v (£) =0
dt R dt RC

* The solution:
A= Ve RC ? ____ | Differential equations:
velt) =Voe © a math-in-a-nutshell moment

%
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Differential equations

» Analysing such circuits amounts to ch(t)+ 1

solving a differential equation dt

 General form:

d(t ) +ax(t) = f(¢)

* Task: find z(t)

%
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: : : dx(t)
Differential equations S+ ax(r) = f(f)}

Linear, differential equations with constant coefficients == it holds:
* When one knows a (particular) solution for the general form

dx |
A1) +ax,(t) = f(t)}

dt

z(t) = z,(t) p— “particular’

* AND the solution of the homogeneous form
dxh(t)
dt

« THEN the complete solution of the differential equation is:
x(1) = x,(1) + x1)

%
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Differential equations

* For the time being, we only consider constant right-hand
side terms of the form f(t) = A

dx, (1)

» General form: S ax,(t) = A
dx, (t

- Homogeneous form: ’;,E ) 4 ax,(t) = 0

%
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Differential equations

 Since the right-hand side term is constant, we may
assume that the particular solution z () is also constant

dx,(t)
7 -+ axp(t) = A
A
xp(t) = K, — Ky = E

%
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Differential equations

* From the homogeneous equation it follows that:

(1) d (1) d d )
» + ax,(t) =0 = (1) = —a = E[lnxh(t)} = —a

c collects constants from both sides

[

« Consequently: Inx,(r) = —at +¢ | == x4t) = Ke' ™ ]

)

— C
K,=e

%
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Differential equations

- Combining the two solutions: x,(r) = K, =§ & x,(t) = K,e ™

|

x(t) = x,(t) + x(t) = 3 + Kye ™

+ K, can be determined if we knew z(¢) at a given moment

 Problem solved!

&
y ~ B
82 -9 %A
| as8-} |
[x‘ Y
\ ")
\ i
\ ()
-:_f;?"‘y’
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Differential equations

* In general, we can express the solution of our first-order
differential equation as

x(t) = K, + Kze_t/T}
» K, is the "steady-state” or the stationary solution for ¢ — oo

* 7Iis the circuit’'s time constant =— it measures how fast
the second term vanishes

%
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Differential equations: time constant

. =K —t/*r“
- After each 7, the quantity =~ """
z,(t) drops by e (Euler's number) \
\
Values of x(t)/K,=e /" 368K AN iz éé
{ X0/ K3 0 N 4r T !
7 0.36788 -—
27 0.13534
37 0.04979 5O _ o
4r 0.01832 1
.

* The smaller the time constant ,
the more abrupt the transition

%
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Method 1: Differential equations

+ examples
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Algorithm

« Write the KCL/KVL equations pertaining to
— the voltage over the capacitance
— the current through the inductance

 Fill in the generic solution:
x(t)=K, +K,e""

* |dentify the coefficients and make use of the initial values

]
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Example 1: loading of a capacitance

- KCL: c&® YO~ _, R
dt £ R Vg C——
dv(t) w0 _ Y <
dt RC RC

* Fill in the generic solution:  x(r)=K, +K,e™""

K, _ K, K, _ V.
__2€t/r+ L 2et/r: S

T RC RC RC
3
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Example 1: loading of a capacitance

i % - +§{%+ %@

* The constant terms and the coefficients in the exponentials are:

* Thus: v(t)=V, +K,e k¢

- K, follows by observing the initial condition: the voltage over the
capacitance is zeroatt = (0 = [K2 =-V ]

« We can now conclude that:  v(t) =V, Ve """ =V, (1-e ")

%
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Example 1: loading of a capacitance

- Plot of the solution | V(f)=VS(1—e‘”RC)J

[

]
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RL circuit: practically the same
i(1)

t=0 + UR(D) _ Vi |
R R

@ '

]
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Example 2: discharge of a capacitance

« The switch is taken to have been for very long in position 1

t=0
Ry v(t (1
1 (o AAA, () i0)
\ 6 kQ)
R
2v( T ye |2 C —=—100 uF 3&9

1

 Determine the current i(t) for ¢t >0

%
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Example 2: discharge of a capacitance

~ ~ R v(1) l(f) t<0
 Fort10 we have: o 6 k0 l ]

G | ) 5

* The capacitance is fully charged - the current is zero

. L 3k )
The initial voltage is: v(0 )_12(6k+3kj_4v

%
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Example 2: discharge of a capacitance

e Fort>0 we have:

12 vCi) Vs

- KCL: YO, o0 0 _,
R, dt R

- With the given values: %mm:o

]
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Rl ’U(t) l(t) t>0
—O ? B
6 kQ
C =—100 nF Ry
3 kQ
L

*R, = 6 kQ
“R,=3kQ
- C =100 yF

27



Example 2: discharge of a capacitance

dv(; ) 4 5v(1)=0

* This is a homogeneous equation:

* The solution reads: v()=k,e""

 Filling in the values yields: v =k,e"** v

%
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Example 2: discharge of a capacitance

+ Filling in the initial voltage v(07) =4V ——  v(t) =4 V |

* Thus, the current is: i(t):%t)

2

i(t) = ge” 02 mA]

¥ i(r) (mA)

* Plot: _i\
-1

%
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Method 2: Algorithmic

+ example
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Algorithm

1) Assume that the solution has the form: x(¢) = K, +K2€—f/f

2) Assume that the circuit is in ‘steady state’ before the
change occurs =— express the current through L or the
voltage across (' just before the switch switches

3) Make use of the fact that the current or the voltage
cannot be discontinuous: v.(0+)=v.(0-)

i, (0+) =7, (0-)

%
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Algorithm

4) Redraw the circuit in the new ‘steady state’ that holds
for t — oo = practically, this applies for t > 57 = solve

the new circuit == x(¢)| _ = x()

t>51

5) The time constant holds for all currents and voltages ?

It is then easier to reduce the circuit to a voltage source,
a resistance and a reactive element (capacitance or
inductance) = the Thévenin equivalent at the reactive
element’s terminals: 7 =R,C and 7 =L/R,

%
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>

AI g O rlth m Independent Independent
sources+ ——=C sources + L
resistances resistances

* Assume that “Circuit”
contains only [
independent sources Ry,

& resistances e _IVIE/E]V [
V(D) —c  vy(H) %L

» It can be replaced by
its Thévenin equivalent

* The canonical RC or RL circuits! = - | standard solution

%
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Algorithm

6) The constants at step 1 are now determined via the
results from the steps 3,4 and 5 x(0+) =K, + K,
and x(o0) =K,

This entails K, = x(0) and K, = x(0+) — x(o0)

The final solution is: x(#)=x(o0)+ [x(O +)_x(oo)] ol }

Initial — final values formula

%
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Example 3. complex circuit

 Determine the current i(¢) for ¢t >0
2 kQ 6 kQ i(?) 4 kQ

36 V

100 wF

« STEP 1:4(t) is of the form: i(t) = K, + K,e™"'"

%
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Example 3. complex circuit

- STEP 2: Draw the circuit just before the switching moment
2 kQ) 6kQ i(0-) 4k <0

I

36V vc(0-) 12V
v(0-) =36 — (2k)(2m) =32 V
]
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Example 3. complex circuit

- STEP 2: Draw the circuit just after the switching moment
2 kQ) 6kQ j(o+) 4ka =0

%
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Example 3. complex circuit
« STEP 4: The circuit in ‘steady state’, valid for ¢t > 57

2 kQ) 6 kQ () 4kQ o>
36V 12V
z( ) _2 mA
2k+6k 2

%
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Example 3. complex circuit
- STEP 5: Determine R, at the capacitor’s terminals

2 k() 6 k() 4 kQ)
l NMVW—
~—Rm 12v( F

(2k)(6k) 3 3 ]
Ry =" 2=2kQ e r=R,C=| (10°)(100)(10°°)=0.15 s

%
TU Delft EE1C1 “Linear Circuits A”: week 1.8

40



Example 3. complex circuit

« STEP 6: Make use of the steps 3,4 and 5

K, =i()=> mA

. . 16 9 5
K2=l(()+)—l(oo):1(04-)—[{1:?_5_g
- L9 5 |
* Hence, it follows that: i(1)= - +~e (/015 o A

%
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Example 3:

* Plot of i(t)

o]
TUDelft

complex circuit

i(2) (mA) 4
16
S ~—0_
S b e T - .
2
2
-
0 01 02 03 04 )
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Step response
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Step response

» Examples thus far: abruptly turning on or off a voltage or
a current source

- Mathematical model: a unit step function

A
0 for t<0
u(t) =
1 for t>0

0 t

%
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Step response :

* In a circuit: a voltage source + a switch y :E+ L

Y

o =0

- = a voltage source V,u(t):

0 for t<0 Vot
u(t) =
1 for r>0

%
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Step response

0
* |n a circult: a current source + a switchl :E oi E

« = a current source [,u(t):
‘ Lu(t)

0 for <0
u(t) =
1 for r>0

%
TU Delft EE1C1 “Linear Circuits A”: week 1.8 47



Step response

* Atime shift can be added: (5 E
Lou(t - tp) *

- The unit step function becomes:  “¢ =,

(t-1) 0 for t<t0.
u — =
° 1 for t>1,

1

Y

%
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Step response

« With two unit step functions one can synthesise a pulse

v(0) |
Au(r)
4 . : v(t)zA[[u(t)]—Lu(t—T)}
—A —Au(t — T)
v(0) 4 Or time-shifted by ¢,
A
L - v(t)zA{u(t—tO)—u[t—(tO+T)]}}

%
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Exam exercise example
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Exam(ple)

» Consider the following circuit:

0.1

L
+

2A 5 )

a) Determine v,(0+).
b) Determine v,(t) for ¢ > 0 s.

%
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2[1 —u(t)] (A)

51



Exam(ple)

a) Determine v.(0+).
* Redraw the circuit for ¢t < 0:

2 A 50 ve(07) 2A

« Calculate the voltage v(0): vc(07) = (2+2)5=20(V)

* Apply the continuity conditions at ¢t = 0:
ve(07) =ve(07) =20 (V)
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Exam(ple)

b) Determine v,(t) for ¢ > 0 s. | 01
» Redraw the circuitfort > 0:  2A( 4 ) 50 |

- Redraw the circuit for t — oc: 2Aq> 59%

L Calculate v (00): vc(o0) =2-5 =
TU Delft EE1C1 “Linear Circuits A”: week 1.8
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Exam(ple) 2 A 50)

b) Determine v,(t) for ¢ > 0 s.

« Calculate the Thévenin resistance: Rty =52

- Calculate the time constant: 7 = R1,C = 0.5(s)

« Assemble vC(t) via the initial-final values formula:
vo(t) = ve(oo) + [Uc(O+) — vc(oo)} exp(—t/T)
=10(1+e%") (V)

%
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Summary of the day

 First-order transient circuits:
— always one capacitance or one inductance
— can contain more resistances and/or sources
* The solution can be derived via:
— differential equation techniques + identifying coefficients
— an algorithm
« Step response:
— step function u(t)
— pulses can be assembled by combining 2 step functions
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Next tasks
* Please do the SGH6

» Seminars of Tuesday and Friday
» Register for the end-of-term exam!

 Next week: second-order circuits

Thank you!
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Your opinion counts!

* The course management and we are highly interested in your
feedback on the course — let us know what you think about the
methods of education, assessment, organisation, etc.

* We are also interested in your opinion on the Circuits Course Labs
« Please go to: https://evasys-survey.tudelft.nl/evasys/online.php?p=4EXUN,

or scan the QR-code

Many thanks in advance for your feedback!

The results will be published on Brightspace
Questions: QualityAssurance-EEMCS@tudelft.nl

)
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