
EE1D1: Digital Systems A
BSc. EE, year 1, 2024-2025, lecture 2

Boolean Circuits

Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science

EE1D1: Digital Systems A
BSc. EE, year 1, 2025-2026, lecture 2

Recap

• Introduction to Digital Systems

• Hardware

• Software

• Digital versus Analog

• Digital needs more resources

• Digital requires less accuracy

• Binary Systems and Boolean Algebra

• Logic/Boolean operations

• Data Representation

• Positive/negative numbers

• Binary, decimal, hexadecimal

• Fixed point numbers

2

Recap

3

Digital Systems

Boolean Circuits

SystemVerilog

Introduction

Lecture 2

Lecture 3

Logic Minimization

Lecture 4

Combinational Modules,
Implementation Technology
and Floating Point Numbers

Lecture 5

Sequential Logic

Lectures 6-9

Recap

4

Week Lecture 1 (Mo) Lecture 2 (Tue) Assignments Mock-Up/Exam

1.1 Intro Boolean Circuits GP-lec1, GP-lec2

1.2 SystemVerilog Logic minim. GP-lec3, GP-lec4

1.3
Combinational

Modules

GP-lec5

Course Lab Part 1

1.4 Course Lab Part 2
Mock Exam (Tuesday)

Discuss Mock Exam (Friday)

1.5 Partial Exam 1 (Friday)

Week Date Lecture Topics Material

1.1
04/09 Lec 1 Introduction to Digital System Sections 1 – 1.5.4
05/09 Lec 2 Boolean Circuits Sections 2.1, 2.3 (not yet 2.3.5) and 2.4

1.2
11/09 Lec 3 SystemVerilog Sections 4.1, 4.2 (not 4.2.3, 4.2.6, 4.2.9), 4.3 and 4.9
12/09 Lec 4 Logic Minimization Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

1.3 18/09 Lec 5
Combinational Modules, Implementation
Technology and Floating Point Numbers

Sections 1.6, 1.7.4-1.7.7, 2.6.2, 2.8, 5.3.1, and 5.3.2

(no rounding and addition)

Outline

System Descriptions

• Switches, truth table, gates, timing diagram, ...

System Types

• Combinatorial systems and Sequential systems

Boolean Algebra

• Laws and theorems

• Simplification, mapping to a circuit

Summary

5

Learning Objectives

As student you should be able to:

• describe digital systems using different formats (e.g. truth table, switches, etc.) and convert them from
one format to the other

• explain how combinational and sequential circuits work at a high abstraction level

• recognize the symbols of the Boolean gates and draw Boolean circuits from expressions

• manipulate Boolean expressions using Boolean theorems and DeMorgan’s law

• convert Boolean circuits to NAND, NOR, NOT equivalents

6

EE1D1: Digital Systems A

System Descriptions

7

System Descriptions

Digital Circuits

Static Description Static & Dynamic

Switches

Truth table

Boolean algebra

Blocks

HDL (e.g., SystemVerilog)

Timing diagram

Logic gates

8

System Description — Static

• Switches

Normally Closed:

Normally Open:

False True

False True

Types:

nmos
transistor

pmos
transistor

NOT:

A B

A • B

False

True

OR:AND:

A B

A + B

False

T rue

A

T rue

False
A’

Implementation NOT, AND, OR:

True: close
False: open

True: open
False: closed

Control:

Control:

9

System Description — Static

• Truth Tables

• List the output values for all possible input value combinations

• Example: Half Adder (add 2 binary values A and B)

A B

0 0
0 1
1 0
1 1

Carry Sum

Truth table Half Adder:

0 0
0 1
0 1
1 0

6
7 +

13

compare
to decimal

values:

0
0 +
0

0
1 +
1

1
0 +
1

1
1 +

10

A
B

Carry CarrySum Sum

10

System Description — Static

• Boolean algebra:
• Values: 0 (false), 1 (true)

• Operations: NOT, AND, OR, …

• Derivation of Boolean description for Half Adder:

NOT X  X’ X AND Y  X • Y  X Y X OR Y  X + Y

A

0
0
1
1

B

0
1
0
1

Carry

0
0
0
1

Sum

0
1
1
0

Sum = A’ B + A B’

Carry = A B

11

A

0
0
1
1

B

0
1
0
1

A•B

0
0
0
1

A’

1
1
0
0

B

0
1
0
1

A’•B

0
1
0
0

Note:

System Description — Static

• Logic gates:

• building blocks for which an electronic implementation exists

Basic logic
gates:

NOT

AND

OR

Circuit for a Half Adder:

Sum

Carry

A

B

Sum = A’ B + A B’

Carry = A B

A’ B

A B’

12

System Description — Static

• Blocks

• emphasis on structure of the system instead of behaviour

• possibility for hierarchical design

Block representation
for the Full Adder

Sum

Cout

A

B

Ci n

A

Ci n

Sum

Cout

F A B

Full Adder made of
2 Half Adder blocks:

B.T.W. a Full Adder adds 3
bits: A, B en Cin

Sum

Cout

A

B

Cin

A

B

Sum

Carry

HA
A

B

Sum

Carry

HA

3-bit Full Adder
Computes s = a+b, where

a=a2a1a0, b=b2b1b0

c FA

s
c FA

s
c FA

s

CinCout

s0s1s2

a0b0a1b1a2b2

0110 (C)

011 (A)

011 (B)+

110 (S)

0

111100

1

0

1

1

0

1

13

0
0
0+

00

A
B
Cin

1
0
0+

01

1
1
0+

10

1
1
1+

11

System Description – Dynamic

• Using Timing Diagrams

• Contains structural information and dynamic behaviour (delay/time!)

Timing diagram for the Half Adder

sum
propagation

delay

circuit hazard (temporary “error”)

sum
propagation

delay

100 200

A

B

SUM

CARRY

Sum

Carry

A

B

14

System Description - Overview

• Different Half Adder Descriptions

• Static:

• Static + Dynamic:

100 200

A

B

SUM

CARR Y

Logic GatesTruth Table Boolean Algebra

Timing Diagram
SystemVerilog

A

0
0
1
1

B

0
1
0
1

Carry

0
0
0
1

Sum

0
1
1
0

Carry = A B

Sum = A’ B + A B’

Sum

Carry

A

B

A’ B

A B’

15

EE1D1: Digital Systems A

System Types

16

System Types - Combinatorial Systems

A B Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

• Constructed from logic gates

• No feedback from outputs to inputs

• Outputs are only directly dependent on current input values

• No memory (no internal state)

Example: Full Adder

17

Sum

Cout

A

B

Ci n

A

Ci n

Sum

Cout

F A B

0
0
0+

00

A
B
Cin

1
0
0+

01

1
1
0+

10

1
1
1+

11

System Types – Sequential Systems

• System has internal state space (set of possible states)

• Feedback van from outputs to inputs

• Outputs dependent on inputs and past (memory)

Synchronous systems

• State transitions triggered by special signal: clock

• E.g.: i = clock, counter goes to next state when i goes from 0 to 1

• Asynchronous systems

• State transitions at arbitrary moments

• E.g.: counter starts when i = 1

i o2 (0 0 1 1 0 …)

o1 (0 1 0 1 0 …)Example: counter

18

EE1D1: Digital Systems A

Boolean Algebra

19

Boolean Algebra

• Boolean algebra is used for specification desired behaviour

• Theorems/properties are used to rewrite Boolean expression:

• minimization of the number of operations (simplification)

• rewriting in terms of available operations

• In the coming lectures you will learn:

• a systematic procedure to simplify Boolean expressions.

• how to use SystemVerilog, and its synthesis tools, for this.

20

Boolean Algebra

• Boolean algebra consists of:

0’ = 1 0 • 0 = 0 0 + 0 = 0
1’ = 0 0 • 1 = 0 0 + 1 = 1

1 • 0 = 0 1 + 0 = 1
1 • 1 = 1 1 + 1 = 1

Axioms:

• set of numbers B = {0, 1} ({false, true})
• set of operations

• unary operation ’ , (NOT)
• binary operations •, + (AND, OR)

21

Boolean Algebra

• Important Theorems

1. Involution property: (i) (a’)’ = a

2. Idempotent property: (i) a + a = a (ii) a • a = a

3. Identity property: (i) a + 0 = a (ii) a • 1 = a

4. Null element property (i) a + 1 = 1 (ii) a • 0 = 0

5. Complement property: (i) a + a' = 1 (ii) a • a' = 0

6. Commutative property: (i) a + b = b + a (ii) a • b = b • a

7. Associative property: (i) (a + b) + c = a + (b + c) = a + b + c
(ii) (a • b) • c = a • (b • c) = a • b • c

8. Distributive property: (i) a + (b • c) = (a + b) • (a + c)

(ii) a • (b + c) = a • b + a • c

All simply derived from: 0’ = 1 0 • 0 = 0 0 + 0 = 0
1’ = 0 0 • 1 = 0 0 + 1 = 1

1 • 0 = 0 1 + 0 = 1
1 • 1 = 1 1 + 1 = 1

22

Boolean Algebra

• Theorems (continued)

Also we often use the following properties:

De Morgan’s laws: (i) (a + b)’ = a’ • b’
(ii) (a • b)’ = a’ + b’

Absorption properties: (i) a • b + a • b’ = a
(ii) (a + b) • (a + b’) = a

(iii) a + a • b = a
(iv) a • (a + b) = a

(v) a + a’ • b = a + b
(vi) a • (a’ + b) = a • b

24

Boolean Algebra – Some Proofs

Absorption property (i): X • Y + X • Y' = X

distributive property (8) X • Y + X • Y’ = X • (Y + Y')

complement p. (5) X • (Y + Y') = X • 1

identity p. (3) X • 1 = X

Absorption property (iii): X + X • Y = X

identity p. (3) X + X • Y = X • 1 + X • Y

distributive p. (8) X • 1 + X • Y = X • (1 + Y)

null element p. (4) X • (1 + Y) = X • 1

identity p. (3) X • 1 = X

Absorption property (v): X + X’ • Y = X + Y

null element p. (4) X + X’ • Y = X • (1 + Y) + X’ • Y

distributive p. (8) X • (1 + Y) + X’ • Y= X + X • Y + X’ • Y

distributive p. (8) X + X • Y + X’ • Y = X + (X + X’) • Y

complement p. (5) X + (X + X’) • Y = X + Y

26

Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

Boolean Algebra – Example: Cout of Full Adder

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin

= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin

= (1) B Cin + A B' Cin + A B Cin' + A B Cin

= B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin

= B Cin + A (B' + B) Cin + A B Cin' + A B Cin

= B Cin + A (1) Cin + A B Cin' + A B Cin

= B Cin + A Cin + A B (Cin' + Cin)

= B Cin + A Cin + A B (1)

= B Cin + A Cin + A B

distributive

idempotent

complement

identity

= A' B Cin + A B' Cin + A B Cin' + A B Cin

27

Boolean Algebra – Question 1

What is a simplification of F = A B C + A B C’ + A’ B C’ ?

a. F = A’ B + A C’

b. F = A B + A C’

c. F = A’ B + B C’

d. F = A B + B C’

F = A B C + A B C’ + A’ B C’

= A B (C + C’) + A’ B C’

= A B + A’ B C’

= B (A + A’ C’)

= B (A + C’)

= A B + B C’

Hence answer d

F = A B C + A B C’ + A’ B C’

= A B C + A B C’ + A’ B C’ + A B C’

= A B (C + C’) + B C’(A’+A)

= A B + B C’

Hence answer d

28

Boolean Algebra – De Morgan’s law

Z = A' B' C + A' B C + A B' C + A B C'

Z' = (A' B' C + A' B C + A B' C + A B C')’ inverting both sides

Z' = (A' B' C)' • (A' B C)' • (A B' C)' • (A B C')' using De Morgan

Z' = (A + B + C') • (A + B' + C') • (A' + B + C') • (A' + B' + C) using De Morgan

Example application: find the complement of an AND/OR expression

Also valid for more terms, e.g. (X + Y + Z)' = X' • Y' • Z'

(X + Y)' = X' • Y' X
0
0
1
1

Y
0
1
0
1

X
1
1
0
0

Y
1
0
1
0

X + Y
1
0
0
0

X•Y
1
0
0
0

(X • Y)' = X' + Y'
X
0
0
1
1

Y
0
1
0
1

X
1
1
0
0

Y
1
0
1
0

X + Y
1
1
1
0

X•Y
1
1
1
0

X + Y = X • Y

X • Y = X + Y

Z = ABC + ABC + ABC + ABC

Z = ABC • ABC • ABC • ABC
Z = (A+B+C) • (A+B+C) • (A+B+C) • (A+B+C)

as (X + Y + Z)' = X'• (Y+Z)' = X' • Y' • Z'

29

Boolean Algebra

• Application: from expression to circuit

Example:
3-input gate

Z

A

B

C

D

Z = A' • B' • (C + D) = A' • (B' • (C + D))

T2

T1

Alternative interpretation:

Z = A' • B' • (C + D)

A

B

C

D
T1

T2

Z

Rewriting an expression implies
another circuit implementation

30

Boolean Algebra – Application

• A circuit for a practical problem using Boolean algebra

Example: “When will I go carpooling ?” (Y):
- if Alex is going (A) and Ben is not going (B)
- for sure if Casper is going (C)”

Create a binary systems that decides when I will go

Y = ?

A B C Y

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

When only inverters (NOT) and OR gates
are available:

A B’ = ((A B’)’)’ = (A’ + (B’)’)’ = (A’ + B)’

Hence Y = A B’ + C = (A’ + B)’ + C

2 inverters (’) and 2 OR gates (+)

Corresponding Boolean expression:

Y = A B’ + C

A
B

C Y

32

Boolean Algebra – Application

• Simplification of expressions

Carpool example: Suppose we start with the truth table.

A B C Y

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Y = BC(A’ + A) + B’C(A’ + A) + AB’C’

= BC + B’C + AB’C’

= C(B + B’) + AB’C’

= C + AB’C’

= C + AB’ (because C + C’X= C + X, with X = AB’)

Simplify this to a Boolean expression:

Y = A’ B’ C + A’ B C + A B’ C’ + A B’ C + A B C

Minimization using Boolean properties:

33

Y = A’ B’ C + A’ B C + A B’ C’ + A B’ C + A B’ C + A B C

= BC(A’ + A) + B’C(A’ + A) + AB’(C+C’)

= BC + B’C + AB’

= C(B + B’) + AB’

= C + AB’

Boolean Algebra – Compound operations

• As we will show later: in current technologies, NAND, NOR gates have better properties than AND, OR gates

NAND
X
Y

Z A NAND B = NOT (A AND B) = (A . B)’

NOR
X

Y
Z A NOR B = NOT (A OR B) = (A + B)’

• Every Boolean expression can be expressed in NAND, NOR, NOT using De Morgan:
A + B = ((A + B)’)’ = (A'.B')'
OR is equivalent to NAND
with inverted inputs

A.B = ((A.B)’)’ = (A' + B')'
AND is equivalent to NOR
with inverted inputs

• BTW: NOT = NAND or NOR with both inputs connected to each other (proof this using Boolean algebra!)

0 0
0 1
1 0
1 1

1
1
1
0

X Y Z

0 0
0 1
1 0
1 1

1
0
0
0

X Y Z

34

Boolean Algebra – Compound operations

X

Y
Z

XOR (eXclusive OR): X XOR Y = (NOT X) Y OR X (NOT Y)

X  Y = X’ Y + X Y'

0 0

0 1

1 0

1 1

0

1

1

0

X Y Z

X

Y

Z

XNOR: (X  Y)’ = (X’ Y + X Y')’ = ... = X’ Y’ + X Y

0 0

0 1

1 0

1 1

1

0

0

1

X Y Z

35

0 1 0 1 0 1

A B C

0

0

Z 1

Z
2

Z
3

0

2-level realisation

(inverters don’t count)

compound gates

(min. # gates)

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

Z

0

1

0

1

0

1

1

0

(proof the equivalence

of the three realisation!)

Boolean Algebra

Example: alternative circuit realisations

multi-level realisation

(using simple gates)

36

Boolean Algebra – Simplification of Expressions

• Aim: reduce complexity of resulting circuit

• number operations/variables = number gates and number gate inputs

• number bracket levels = number gate levels

• Background:
• less gate inputs faster gates

• number of gate inputs in any case limited

• less gates lower costs / less power usage

• less gate levels less delay times

37

Question 2

What is a logic expression for the circuit below:

a. F = A’ B C + A B’ + A C’

b. F = A B C + A’ B’ + A’ C’

c. F = A B’ C’ + A B’ + A’ C

d. None of the above answers.

Let the output of the NAND be X = (B C)’. Then

F = A X’ + A’ X

= A ((B C)’)’ + A’ (B C)’

= A B C + A’ (B’ + C’)

= A B C + A’ B’ + A’ C’

Hence answer b

A

B
F

C

38

Summary

• System Descriptions

• Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL

• System Types

• Combinational circuits

• Sequential circuits

• Boolean algebra

• Logic/Boolean operations

• Boolean simplification/minimization

• Prove system equivalence

39

To do list

• Reading Material book “Digital Design”:

• Sections 2.1 and 2.3 (not yet 2.3.5) and 2.4

• Assignments for this lecture:

• Gated Practise Lecture 2

• Reading material for next lecture: Logic Minimization

• Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

40

Thank you

41

	Slide 1: Boolean Circuits
	Slide 2: Recap
	Slide 3: Recap
	Slide 4: Recap
	Slide 5: Outline
	Slide 6: Learning Objectives
	Slide 7: System Descriptions
	Slide 8: System Descriptions
	Slide 9: System Description — Static
	Slide 10: System Description — Static
	Slide 11: System Description — Static
	Slide 12: System Description — Static
	Slide 13: System Description — Static
	Slide 14: System Description – Dynamic
	Slide 15: System Description - Overview
	Slide 16: System Types
	Slide 17: System Types - Combinatorial Systems
	Slide 18: System Types – Sequential Systems
	Slide 19: Boolean Algebra
	Slide 20: Boolean Algebra
	Slide 21: Boolean Algebra
	Slide 22: Boolean Algebra
	Slide 24: Boolean Algebra
	Slide 26: Boolean Algebra – Some Proofs
	Slide 27: Boolean Algebra – Example: Cout of Full Adder
	Slide 28: Boolean Algebra – Question 1
	Slide 29: Boolean Algebra – De Morgan’s law
	Slide 30: Boolean Algebra
	Slide 32: Boolean Algebra – Application
	Slide 33: Boolean Algebra – Application
	Slide 34: Boolean Algebra – Compound operations
	Slide 35: Boolean Algebra – Compound operations
	Slide 36: Boolean Algebra
	Slide 37: Boolean Algebra – Simplification of Expressions
	Slide 38: Question 2
	Slide 39: Summary
	Slide 40: To do list
	Slide 41

