EE1D1: Digital Systems A

BSc. EE, year 1, 2025-2026, lecture 2

Boolean Circuits

Computer Engineering Lab
Faculty of Electrical Engineering, Mathematics & Computer Science

]
TUDelft

« Introduction to Digital Systems
« Hardware
« Software

» Digital versus Analog

« Digital needs more resources
 Digital requires less accuracy

 Binary Systems and Boolean Algebra
 Logic/Boolean operations

» Data Representation

* Positive/negative numbers
 Binary, decimal, hexadecimal
 Fixed point numbers

Introduction

Digital Systems

Lecture 2 l Lectures 6-9 1

I Boolean Circuits I Sequential Logic
Lecture 3 1
I SystemVerilog I

Lecture 4 1

I Logic Minimization I

Lecture 5 1

Combinational Modules,
Implementation Technology
and Floating Point Numbers

Lecture 1 (Mo) Lecture 2 (Tue) Mock-Up/ Exam

R

05/09
12/09

m SystemVerilog

Combinational
Modules

Boolean Circuits GP-lec1, GP-lec2
Logic minim. GP-lec3, GP-lec4
GP-lec5

Course Lab Part 1
Mock Exam (Tuesday)
Discuss Mock Exam (Friday)

Partial Exam 1 (Friday)

Course Lab Part 2

Week | Date |Lecture [Topics |Materil |
Lec 1 Introduction to Digital System Sections1 -1.5.4
Lec 2 Boolean Circuits Sections 2.1, 2.3 (not yet 2.3.5) and 2.4
Lec 3 SystemVerilog Sections 4.1, 4.2 (not 4.2.3, 4.2.6, 4.2.9), 4.3 and 4.9
Lec 4 Logic Minimization Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9
Lec 5 Combinational Modules, Implementation Sections 1.6, 1.7.4-1.7.7, 2.6.2, 2.8, 5.3.1, and 5.3.2

18/09

Technology and Floating Point Numbers (no rounding and addition)

System Descriptions

« Switches, truth table, gates, timing diagram, ...

System Types
« Combinatorial systems and Sequential systems

Boolean Algebra
* Laws and theorems

« Simplification, mapping to a circuit

Summary

Learning Objectives

As student you should be able to:

« describe digital systems using different formats (e.g. truth table, switches, etc.) and convert them from
one format to the other

 explain how combinational and sequential circuits work at a high abstraction level
 recognize the symbols of the Boolean gates and draw Boolean circuits from expressions
« manipulate Boolean expressions using Boolean theorems and DeMorgan’s law
 convert Boolean circuits to NAND, NOR, NOT equivalents

EE1D1: Digital Systems A

System Descriptions

System Descriptions

Digital Circuits

Static Description Static & Dynamic

Switches Timing diagram

Truth table

HDL (e.g., SystemVerilog)

Boolean algebra

Logic gates

Blocks

System Description — Static

« Switches i
Types: . v
Normally Open: "—/—D o2 AMOS
: : True: cl
Control: False True , transistor Fnglsee:co%se%
Y
Normally Closed: o—p—o N, L
Control: False True : tr:nr:i?s:or
: True: open
: False: closed
Implementation NOT, AND, OR:
NOT: AND: OR:
e False False
/ A+B
A AeB True
False _*
A True

System Description — Static

« Truth Tables
« List the output values for all possible input value combinations
« Example: Half Adder (add 2 binary values A and B)

A 0 0 1

1
compare
B 0+ 1+ 0+ 1+ P 0

to decimal 7+

0 1 1 10 values: 13
= S
Carry Sum Carry ~ Sum

Truth table Half Adder:

A B |Carry Sum
0O 0| 0 O
0 1| O 1
1 0| O 1
1 1| 1 0

System Description — Static

 Boolean algebra:
« lalues: 0 (false), 1 (true)
« Operations: NOT, AND, OR, ...

NOT X = X

XANDY = XeY= XY

 Derivation of Boolean description for Half Adder:

A B | Carry Sum
00 0 0
01 0 1
10 0 1
11 1 0

Sum=A'B+AB
Carry = AB

XORY=X+Y
Note:
A B|AeB | A B|AeB
O 0| O 1 0| O
0O 1] O 1 1 1
1 0|1 O 0 0| O
1 1 1 0 1 0

System Description — Static

 Logic gates:
« building blocks for which an electronic implementation exists

Basic logic Circuit for a Half Adder:
gates:

NOT D_‘—{>O_\‘ A'B
D A) Sum
AND

—3 :>+{ >orD? B’
OR B

j > = -

-

Sum=A'B+ AP’
Carry =AB

System Description — Static

 Blocks
« emphasis on structure of the system instead of behaviour
« possibility for hierarchical design

Full Adder made of Block representation 3-bit Full Adder
2 Half Adder blocks: for the Full Adder Computes s = a+b, where
d=d,didg, b=b2b1b0
Sum sum b, a, b, a; by ag
=AA Suml4A Sum |:>—A A Sum Ol lO 1l ll ll ll
HA HA Cout |
=8B Carryl B Carryh cout o2 — 18 FA P FA L FA | R |on
G -| - Cout 0 S 1 S 1 s |0
>l =90 cin Coutl——=a I I
1 1 }o
S, S, So
B.T.W. a Full Adder adds 3
bits: A, B en Cin 'S 0 1 1 1 0110 (C)

Cin 0+ 0+ 0+ 1+

011 (B)+
00 01 10 11

110 (S)

System Description — Dynamic

 Using Timing Diagrams
 Contains structural information and dynamic behaviour (delay/time!)

= ‘>O '—} Timing diagram for the Half Adder
A Sum i , " 100 | , " 200
A i : : :
. B I J : E [: _
} S " ——
D—o—~[>0f CARRY o ; 4 L -
B TN Carry _'I :‘_ — I<_
— sum sum
- propagation propagation
delay delay

circuit hazard (temporary “error”)

System Description - Overview

« Different Half Adder Descriptions

- Static:
Truth Table Boolean Algebra
A B | Carry Sum Sum=A'B+APB
Carry =AB
00 0 0
01 0 1
10 0 1
11 1 0

« Static + Dynamic:

Timing Diagram
' 100'

Logic Gates

B

Sum

A
s
RS
-

SUM I L1

CARRY f

SystemVerilog

[
]

EE1D1: Digital Systems A

System Types

System Types - Combinatorial Systems

« Constructed from logic gates

* No feedback from outputs to inputs

« Qutputs are only directly dependent on current input values

* No memory (no internal state)

Example: Full Adder

A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

DA—A Sum Sum

o2 1 FA

on 1o coutl—2
A 0 1 1
B 0 0 1
Cin 0+ 0+ 1+

00 01 10 11

System Types — Sequential Systems

« System has internal state space (set of possible states)
« Feedback van from outputs to inputs
« QOutputs dependent on inputs and past (memory)

Example: counter >-DU- 01 (01010...)
i D02 (00110..)

Synchronous systems

« State transitions triggered by special signal: clock

* E.g.: i = clock, counter goes to next state when i goes from 0 to 1
« Asynchronous systems

« State transitions at arbitrary moments

« E.g.: counter starts wheni =1

EE1D1: Digital Systems A

Boolean Algebra

Boolean Algebra

« Boolean algebra is used for specification desired behaviour

 Theorems/properties are used to rewrite Boolean expression:
* minimization of the number of operations (simplification)

« rewriting in terms of available operations

* In the coming lectures you will learn:

» a systematic procedure to simplify Boolean expressions.

* how to use SystemVerilog, and its synthesis tools, for this.

Boolean Algebra

« Boolean algebra consists of:

« set of numbers B={0,1} ({false, true})
« set of operations

e unary operation ', (NOT)

« binary operations ¢, + (AND, OR)

Axioms:

0'=1 Oe0=0 0+0=0

1'’=0 Qel1=0 0+1=
1¢0=0 1+0=1
lel=1 1+1=1

Boolean Algebra

« Important Theorems

1. Involution property: (i) (@) =a

2. Ildempotent property: (i) ata=a (i)asa=a

3. Identity property: (i) a+0=a (ij)a*1=a

4. Null element property (i) a+1=1 (ia*0=0

5. Complement property: (i) a+a' =1 (ija*a'=0

6. Commutative property: (i) at+b=b+a (i) a*b=b-a

7. Associative property: (i) @+b)+c=a+(b+c)=a+b+c
(i)(@a*b)ec=ac-(bec)=a-b-c

8. Distributive property: (i) at(bec)=(a+b)+(a+c)

(i) as(b+c)=a*b + a-cC

All simply derived from: 0’
1[

i

o=
= = O O
e o o o
R OO
I | | |
= O O O
= = OO
+ + + +
R O O
I | | |
= = = O

N
N

Boolean Algebra

« Theorems (continued)

Also we often use the following properties:

De Morgan’s laws: (i) (@a+b)y=a eb
(i)(aeb) =a"+b’
Absorption properties: (i) aeb+aeb' =a

(i)(a+b)e(a+b)=a

(ila+aeb=a
(v)ae(a+b)=a

(v) a+a'eb=a+b
(viae(a’+b)=aeb

Boolean Algebra — Some Proofs

_ _ ' 1. Involution property: (i) (@) =a
AbSOFptIOﬂ prOperty ('): XeY + XeY =X 2. Idempotent property: (i) ata=a (i)aca=a
distributive property (8) Xe¥Y 4+ XeoVY = Xe (Y + Y') 3. Identity property: () a+0=a (ia*1=a
Complement . (5) X o (Y + Yu) = Xel 4. Null element property (i) a+1=1 (ia=0=0
id] 3 X o1 _ 5. Complement property: (i) ata'=1 (ia=a'=0
I entlty P- () * - 6. Commutative property: (i) atb=b+a (i)a*b=b-a
] 7. Associative property: (i) @+tb)+c=a+(b+c)=a+b+c
Absorption property (iii): X + XeY = X (iy(a+b)sc=as+(bsc)=asb+c
identity D. (3) X + XeoY = Xel + XeVY 8. Distributive property: §:|)) a;: gg ;c;)):z(:fbb)+- (;+CC)
distributive p. (8) Xel + XeY = Xe(1+Y)
null element p. (4) Xe(1+Y) = Xel
identity p. (3) Xel = X

Absorption property (v): X + X'eY = X+Y

null element p. (4) X + X oY = Xe(1+Y)+ X' oY
distributive p. (8) Xe(l+Y)+ Xe¥Y= X+XeoeY+X oY
distributive p. (8) X+XeY+X oY = X+(X+X)eoY
complement p. (5) X+(X+X)eY = X+Y

Boolean Algebra — Example: Cout of Full Adder

Cout = ABCin + AB'Cin + ABCin' + ABCin A B Cin| Cout
- A'BCin + AB'Cin + ABCin' + ABCin R o 1l
=A'BCin+AB'Ci£1+ABCin'+ABCin+ABCin 8 } (1) 2
= A'BCin + ABCn + AB'Cin + ABCin' + ABCin 1 0 0] 0
- (A +A)BCin + AB'Cin + ABCin' + ABCin L ol

11 1] 1

= (1)BCin + AB'Cin + ABCin' + ABCin \
= BCin + AB'Cin +ABCin' + ABCin + ABCin idempotent

- BCin + AB'Cin + ABCin + ABCin' + AB Cin

= BCin + A(BB+B)Cin + ABCin" + ABCin

= BGn + A()Cin + ABCN' + ABCn
= BCin + ACn + AB(Cin'+ Cin)

= BCin + ACin + AB(1) T complement
- BCin + ACin + AB - identy

Boolean Algebra — Question 1

What is a simplificationof F=ABC+ ABC' + AB(C'?

a.F=AB+AC
b.F=AB+AC
c. F=AB+BC
dF=AB+BC

F=ABC+ABC +A'BC
=AB(C+C)+A'BC

=AB+ABC F=ABC+ABC +A'BC
=B(A+AC) =ABC+ABC' +ABC+ABC’
=B(A+ C) =AB(C+C)+ BC(A+A)
=AB+BC =AB+BC

Hence answer d Hence answer d

Boolean Algebra — De Morgan’s law

Dy X Y X Y |X#Y XY Y.
(X+Y) =X"eY B R 1 X+Y =XY
01 10| 0 0
100 1|0 o0
1100/ 0 o0
D v X Y X Y |[XY X+ ity
(XeY) = X'+Y T XeY =X+Y
01 10| 1 1
1.0 0 1| 1 1
11 00| 0 0

Also valid for more terms, e.g. X+ Y + Z)' =X e Y' ¢ 7 as(X+Y+Z)=Xe(Y+Z)'=X' oY o 7

Example application: find the complement of an AND/OR expression

Z =ABC+ ABC + AB'C + ABC

Z'=(A"B'C + AABC + ABC + ABC"Y inverting both sides
Z'=(A'B'C)e(AABC) e (AB'C) e (ABC" using De Morgan
Z'=(A+B+C)e(A+B +C)e(A'+B+C)e (A + B + C) using De Morgan

ABC + ABC + ABC + ABC
ABC ¢ ABC ¢ ABC * ABC
(A+B+C) ® (A+B+C) ¢ (A+B+C) ¢ (A+B+C)

Z
Z
z

Boolean Algebra

 Application: from expression to circuit

Example: 3-input gate

Z=A'+B'+(C+D) /
o> L -
e e DR

=

D

Alternative interpretation:

— T

Z=A'°B"(C+D)=A"(B'°(C+D))

=1 o

c T, Rewriting an expression implies
E;i>—l; another circuit implementation
D

Boolean Algebra — Application

* A circuit for a practical problem using Boolean algebra

Example: “When will I go carpooling ?” (Y):
- if Alex is going (A) and Ben is not going (B)
- for sure if Casper is going (C)”

Create a binary systems that decides when I will go

Y=7

A B Y

Corresponding Boolean expression: C
Y=AB +C - - 000 0
001 1
010/ 0
When only inverters (NOT) and OR gates (1) é é %
are available: 101] 1
110|0
1111

AB = ((AB)) =(A+(B)) =(A"+B) A D>
HenceY =AB' +C=(A'+B) +C B%

2 inverters (') and 2 OR gates (+) C b’Y

Boolean Algebra — Application

- Simplification of expressions ABC|Y
: 00O0fO

Carpool example: Suppose we start with the truth table. 001l 1
0100

0111

Simplify this to a Boolean expression: % 8 (1) %
Y=AB'C+ABC+ABC+ABC+ABC 1100
111] 1

Minimization using Boolean properties:

Y = BC(A"+ A) + B'C(A" + A) + AB'C’ Y=ABC+ABC+ABC+AB'C+AB'C+ABC
= BC + B'C + AB'C’ = BC(A"+ A) + B'C(A" + A) + AB'(C+C)
= C(B + B') + AB'C’ = BC + B'C + AB’
= C + ABC’ = C(B + B’) + AB’

= C + AB’ (because C + C'X= C + X, with X = AB’) = C+ AB’

Boolean Algebra — Compound operations

NAND 3 oz A NAND B = NOT (A AND B) = (A . B)’

NOR ¥y oz A NOR B = NOT (A OR B) = (A + BY

R, OO|X RrFROOIX
HORO|I<X RORO|IK
OCOORRIN O F N

* As we will show later: in current technologies, NAND, NOR gates have better properties than AND, OR gates

e Every Boolean expression can be expressed in NAND, NOR, NOT using De Morgan:

A+B=(A+B))=(A.B"Y A.B = ((A.B)) = (A"+ B")
OR is equivalent to NAND AND is equivalent to NOR
with /nverted inputs with /nverted inputs

« BTW: NOT = NAND or NOR with both inputs connected to each other (proof this using Boolean algebra!)

Boolean Algebra — Compound operations

XOR (eXclusive OR): X XOR'Y = (NOT X) Y OR X (NOT Y)
X®Y=XY+XY

XY | Z
00| O0
X 011
Y:)D_Z 101
1110

XNOR: XOY)Y=(XY+XYYy= .. =X

XY
X:) , 00
y 0 1
10
11

Boolean Algebra

Example: alternative circuit realisations

Y 2-level realisation
(inverters don’t count)

-~ 2 a2 0O0O0O0>P
_ 2 00 -~ -0 0|
A~ O~ 0O ~~0-~0I0

)a multi-level realisation
| (using simple gates)

- D
(proof the equivalence ™ D:ND_ compound gates

of the three realisation!) T 3 (min. # gates)

&)

Boolean Algebra — Simplification of Expressions

« Aim: reduce complexity of resulting circuit
* number operations/variables = number gates and number gate inputs
* number bracket levels = number gate levels

« Background:
* |ess gate inputs — faster gates
« number of gate inputs in any case limited
* less gates —> |ower costs / less power usage
 less gate /evels — less delay times

What is a logic expression for the circuit below:

e e

a.F=ABC+AB +AC

b.F=ABC+A'B+A C Let the output of the NAND be X = (B C)’. Then
C.F=AB C+AB +AC F=AX+AX
=A((BC)) + A" (B C)
=ABC+A (B +(C)
=ABC+A'B +A C
Hence answer b

d. None of the above answers.

 System Descriptions
« Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL

« System Types
« Combinational circuits
« Sequential circuits

« Boolean algebra
 Logic/Boolean operations

» Boolean simplification/minimization

* Prove system equivalence

To do list

« Reading Material book "Digital Design”:
« Sections 2.1 and 2.3 (not yet 2.3.5) and 2.4

« Assignments for this lecture:
 Gated Practise Lecture 2

« Reading material for next lecture: Logic Minimization
« Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

Thank you

	Slide 1: Boolean Circuits
	Slide 2: Recap
	Slide 3: Recap
	Slide 4: Recap
	Slide 5: Outline
	Slide 6: Learning Objectives
	Slide 7: System Descriptions
	Slide 8: System Descriptions
	Slide 9: System Description — Static
	Slide 10: System Description — Static
	Slide 11: System Description — Static
	Slide 12: System Description — Static
	Slide 13: System Description — Static
	Slide 14: System Description – Dynamic
	Slide 15: System Description - Overview
	Slide 16: System Types
	Slide 17: System Types - Combinatorial Systems
	Slide 18: System Types – Sequential Systems
	Slide 19: Boolean Algebra
	Slide 20: Boolean Algebra
	Slide 21: Boolean Algebra
	Slide 22: Boolean Algebra
	Slide 24: Boolean Algebra
	Slide 26: Boolean Algebra – Some Proofs
	Slide 27: Boolean Algebra – Example: Cout of Full Adder
	Slide 28: Boolean Algebra – Question 1
	Slide 29: Boolean Algebra – De Morgan’s law
	Slide 30: Boolean Algebra
	Slide 32: Boolean Algebra – Application
	Slide 33: Boolean Algebra – Application
	Slide 34: Boolean Algebra – Compound operations
	Slide 35: Boolean Algebra – Compound operations
	Slide 36: Boolean Algebra
	Slide 37: Boolean Algebra – Simplification of Expressions
	Slide 38: Question 2
	Slide 39: Summary
	Slide 40: To do list
	Slide 41

