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Recap

• Introduction to Digital Systems

• Hardware

• Software

• Digital versus Analog

• Digital needs more resources

• Digital requires less accuracy

• Binary Systems and Boolean Algebra

• Logic/Boolean operations

• Data Representation

• Positive/negative numbers

• Binary, decimal, hexadecimal

• Fixed point numbers
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Recap
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Digital Systems

Boolean Circuits

SystemVerilog

Introduction

Lecture 2

Lecture 3

Logic Minimization

Lecture 4

Combinational Modules, 
Implementation Technology 
and Floating Point Numbers

Lecture 5

Sequential Logic

Lectures 6-9



Recap
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Week Lecture 1 (Mo) Lecture 2 (Tue) Assignments Mock-Up/Exam

1.1 Intro Boolean Circuits GP-lec1, GP-lec2

1.2 SystemVerilog Logic minim. GP-lec3, GP-lec4

1.3
Combinational

Modules

GP-lec5

Course Lab Part 1

1.4 Course Lab Part 2
Mock Exam (Tuesday)

Discuss Mock Exam (Friday)

1.5 Partial Exam 1 (Friday)

Week Date Lecture Topics Material

1.1
04/09 Lec 1 Introduction to Digital System Sections 1 – 1.5.4
05/09 Lec 2 Boolean Circuits Sections 2.1, 2.3 (not yet 2.3.5) and 2.4

1.2
11/09 Lec 3 SystemVerilog Sections 4.1, 4.2 (not 4.2.3, 4.2.6, 4.2.9), 4.3 and 4.9
12/09 Lec 4 Logic Minimization Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

1.3 18/09 Lec 5
Combinational Modules, Implementation
Technology and Floating Point Numbers

Sections 1.6, 1.7.4-1.7.7, 2.6.2, 2.8, 5.3.1, and 5.3.2 

(no rounding and addition)



Outline

System Descriptions

• Switches, truth table, gates, timing diagram, ...

System Types

• Combinatorial systems and Sequential systems 

Boolean Algebra

• Laws and theorems

• Simplification, mapping to a circuit

Summary
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Learning Objectives

As student you should be able to:

• describe digital systems using different formats (e.g. truth table, switches, etc.) and convert them from 
one format to the other

• explain how combinational and sequential circuits work at a high abstraction level

• recognize the symbols of the Boolean gates and draw Boolean circuits from expressions

• manipulate Boolean expressions using Boolean theorems and DeMorgan’s law

• convert Boolean circuits to NAND, NOR, NOT equivalents
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EE1D1: Digital Systems A

System Descriptions
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System Descriptions

Digital Circuits

Static Description Static & Dynamic

Switches

Truth table

Boolean algebra

Blocks

HDL (e.g., SystemVerilog)

Timing diagram

Logic gates

8



System Description — Static

• Switches

Normally Closed:

Normally Open:

False True

False True

Types:

nmos
transistor

pmos
transistor

NOT:

A       B

A • B

False

True

OR:AND:

A B 

A + B 

False 

T rue 

A 

T rue 

False 
A’

Implementation NOT, AND, OR:

True: close 
False: open

True: open
False: closed 

Control:

Control:
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System Description — Static

• Truth Tables

• List the output values for all possible input value combinations

• Example:  Half Adder (add 2 binary values A and B)

A  B

0   0
0   1
1   0
1   1

Carry Sum

Truth table Half Adder:

0      0
0      1
0      1
1      0

6
7 +

13

compare
to decimal

values:

0
0 +
0

0
1 +
1

1
0 +
1

1
1 +

10

A
B 

Carry CarrySum Sum
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System Description — Static

• Boolean algebra:
• Values: 0 (false), 1 (true)

• Operations: NOT, AND, OR,  …

• Derivation of Boolean description for Half Adder:

NOT X   X’      X AND Y  X • Y  X Y      X OR Y  X + Y

A

0
0
1
1

B

0
1
0
1

Carry

0
0
0
1

Sum

0
1
1
0

Sum = A’ B + A B’

Carry = A B

11

A

0
0
1
1

B

0
1
0
1

A•B

0
0
0
1

A’

1
1
0
0

B

0
1
0
1

A’•B

0
1
0
0

Note:



System Description — Static

• Logic gates: 

• building blocks for which an electronic implementation exists

Basic logic
gates:

NOT

AND

OR

Circuit for a Half Adder:

Sum

Carry

A

B

Sum = A’ B + A B’

Carry = A B

A’ B

A B’
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System Description — Static

• Blocks

• emphasis on structure of the system instead of behaviour

• possibility for hierarchical design

Block representation
for the Full Adder

Sum 

Cout 

A 

B 

Ci n 

A 

Ci n 

Sum 

Cout 

F A B 

Full Adder made of 
2 Half Adder blocks:

B.T.W. a Full Adder adds 3 
bits: A, B en Cin

Sum 

Cout 

A 

B 

Cin 

A 

B 

Sum 

Carry 

HA 
A 

B 

Sum 

Carry 

HA 

3-bit Full Adder
Computes s = a+b, where 

a=a2a1a0, b=b2b1b0

c FA

s
c FA

s
c FA

s

CinCout

s0s1s2

a0b0a1b1a2b2

0110 (C)

011 (A)

011 (B)+

110 (S) 

0

111100

1

0

1

1

0

1

13

0
0
0+

00

A
B
Cin

1
0
0+

01

1
1
0+

10

1
1
1+
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System Description – Dynamic

• Using Timing Diagrams

• Contains structural information and dynamic behaviour (delay/time!)

Timing diagram for the Half Adder

sum
propagation

delay

circuit hazard (temporary “error”)

sum
propagation

delay

100 200 

A 

B 

SUM 

CARRY 

Sum

Carry

A

B
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System Description - Overview

• Different Half Adder Descriptions

• Static: 

• Static + Dynamic:

100 200 

A 

B 

SUM 

CARR Y 

Logic GatesTruth Table Boolean Algebra

Timing Diagram
SystemVerilog

A

0
0
1
1

B

0
1
0
1

Carry

0
0
0
1

Sum

0
1
1
0

Carry = A B

Sum = A’ B + A B’

Sum

Carry

A

B

A’ B

A B’
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EE1D1: Digital Systems A

System Types
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System Types - Combinatorial Systems

A B Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

• Constructed from logic gates

• No feedback from outputs to inputs

• Outputs are only directly dependent on current input values

• No memory (no internal state)

Example:  Full Adder
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Sum 

Cout 

A 

B 

Ci n 

A 

Ci n 

Sum 

Cout 

F A B 

0
0
0+

00

A
B
Cin

1
0
0+

01

1
1
0+

10

1
1
1+

11



System Types – Sequential Systems 

• System has internal state space (set of possible states)

• Feedback van from outputs to inputs

• Outputs dependent on inputs and past (memory) 

Synchronous systems

• State transitions triggered by special signal: clock

• E.g.: i = clock, counter goes to next state when i goes from 0 to 1

• Asynchronous systems

• State transitions at arbitrary moments

• E.g.: counter starts when i = 1

i o2   (0 0 1 1 0 … )

o1   (0 1 0 1 0 … )Example: counter
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EE1D1: Digital Systems A

Boolean Algebra
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Boolean Algebra

• Boolean algebra is used for specification desired behaviour

• Theorems/properties are used to rewrite Boolean expression:

• minimization of the number of operations (simplification)

• rewriting in terms of available operations

• In the coming lectures you will learn:

• a systematic procedure to simplify Boolean expressions.  

• how to use SystemVerilog, and its synthesis tools, for this.
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Boolean Algebra

• Boolean algebra consists of:

0’ = 1 0 • 0 = 0 0 + 0 = 0
1’ = 0 0 • 1 = 0 0 + 1 = 1

1 • 0 = 0 1 + 0 = 1
1 • 1 = 1 1 + 1 = 1

Axioms:

• set of numbers B = {0, 1}  ({false, true})
• set of operations

• unary operation ’ , (NOT)
• binary operations •, + (AND, OR)
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Boolean Algebra

• Important Theorems

1. Involution property: (i)  (a’)’ = a

2. Idempotent property: (i)  a + a = a (ii) a • a = a

3. Identity property: (i)  a + 0 = a (ii) a • 1 = a

4. Null element property (i)  a + 1 = 1 (ii) a • 0 = 0

5. Complement property:   (i)  a + a' = 1 (ii) a • a' = 0

6. Commutative property: (i)  a + b = b + a (ii)  a • b = b • a

7. Associative property: (i)  (a + b) + c = a + (b + c) = a + b + c
(ii) (a • b) • c = a • (b • c) = a • b • c

8. Distributive property: (i)  a + (b • c) = (a + b) • (a + c)

(ii)  a • (b + c) = a • b +  a • c

All simply derived from: 0’ = 1 0 • 0 = 0     0 + 0 = 0
1’ = 0 0 • 1 = 0     0 + 1 = 1

1 • 0 = 0     1 + 0 = 1
1 • 1 = 1     1 + 1 = 1
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Boolean Algebra

• Theorems (continued)

Also we often use the following properties:

De Morgan’s laws: (i)  (a + b)’ = a’ • b’
(ii) (a • b)’ = a’ + b’

Absorption properties:     (i)  a • b + a • b’ = a
(ii) (a + b) • (a + b’) = a

(iii) a + a • b = a
(iv) a • (a + b) = a

(v)  a + a’ • b = a + b
(vi) a • (a’ + b) = a • b 
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Boolean Algebra – Some Proofs

Absorption property (i): X • Y  +  X • Y' = X

distributive property (8) X • Y  +  X • Y’ =  X • (Y + Y') 

complement p. (5) X • (Y + Y')      =  X • 1

identity p. (3) X • 1                =  X

Absorption property (iii):    X  +  X • Y  =  X

identity p. (3) X  +  X • Y =  X • 1  +  X • Y

distributive p. (8) X • 1  +  X • Y  =  X • (1 + Y)

null element p. (4) X • (1 + Y)       =  X • 1

identity p. (3) X • 1               =  X 

Absorption property (v):     X  +  X’ • Y  =  X + Y

null element p. (4) X  +  X’ • Y       =  X • (1 + Y) +  X’ • Y

distributive p. (8)      X • (1 + Y) +  X’ • Y=  X + X • Y + X’ • Y 

distributive p. (8) X + X • Y + X’ • Y   =  X + (X + X’) • Y 

complement p. (5)     X + (X + X’) • Y =  X + Y 
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Cout =  A' B Cin +  A B' Cin +  A B Cin'  +  A B Cin

Boolean Algebra – Example: Cout of Full Adder

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

=  A' B Cin +  A B' Cin +  A B Cin'  +  A B Cin +  A B Cin

=  A' B Cin +  A B Cin +  A B' Cin +  A B Cin'  +  A B Cin

=  (A' + A) B Cin +  A B' Cin +  A B Cin'  +  A B Cin

=  (1) B Cin +  A B' Cin +  A B Cin'  +  A B Cin

=  B Cin +  A B' Cin + A B Cin'  +  A B Cin +  A B Cin

=  B Cin +  A B' Cin +  A B Cin +  A B Cin'  +  A B Cin

=  B Cin +  A (B' + B) Cin +  A B Cin'  +  A B Cin

=  B Cin +  A (1) Cin +  A B Cin'  +  A B Cin

=  B Cin +  A Cin +  A B (Cin' +  Cin)

=  B Cin +  A Cin +  A B (1)

=  B Cin +  A Cin +  A B

distributive

idempotent

complement

identity

=  A' B Cin +  A B' Cin +  A B Cin'  +  A B Cin
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Boolean Algebra – Question 1

What is a simplification of F = A B C + A B C’ + A’ B C’ ?

a. F = A’ B + A C’

b. F = A B + A C’

c. F = A’ B + B C’

d. F = A B + B C’

F = A B C + A B C’ + A’ B C’ 

= A B (C + C’) + A’ B C’

= A B + A’ B C’

= B (A + A’ C’)

= B (A + C’)

= A B + B C’

Hence answer d

F = A B C + A B C’ + A’ B C’

= A B C + A B C’ + A’ B C’ + A B C’ 

= A B (C + C’) + B C’(A’+A)

= A B + B C’

Hence answer d
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Boolean Algebra – De Morgan’s law

Z  = A' B' C  +  A' B C  +  A B' C  +  A B C'

Z' = (A' B' C  +  A' B C  +  A B' C  +  A B C')’ inverting both sides

Z' = (A' B' C)' • (A' B C)' • (A B' C)' • (A B C')'          using De Morgan

Z' = (A + B + C') • (A + B' + C') • (A' + B + C') • (A' + B' + C) using De Morgan

Example application: find the complement of an AND/OR expression

Also valid for more terms, e.g. (X + Y + Z)'  = X' • Y' • Z'

(X + Y)'  = X' • Y' X 
0 
0 
1 
1 

Y 
0 
1 
0 
1 

X 
1 
1 
0 
0 

Y 
1 
0 
1 
0 

X + Y 
1 
0 
0 
0 

X•Y 
1 
0 
0 
0 

(X • Y)'  =  X' + Y'
X 
0 
0 
1 
1 

Y 
0 
1 
0 
1 

X 
1 
1 
0 
0 

Y 
1 
0 
1 
0 

X + Y 
1 
1 
1 
0 

X•Y 
1 
1 
1 
0 

X + Y  = X • Y

X • Y  = X + Y

Z = ABC + ABC + ABC + ABC

Z = ABC • ABC • ABC • ABC
Z = (A+B+C) • (A+B+C) • (A+B+C) • (A+B+C) 

as (X + Y + Z)' = X'• (Y+Z)' = X' • Y' • Z'
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Boolean Algebra

• Application: from expression to circuit

Example:
3-input gate

Z 

A

B

C

D 

Z = A' • B' • (C + D) = A' • (B' • (C + D))

T2

T1

Alternative interpretation:

Z = A' • B' • (C + D) 

A

B

C

D
T1

T2

Z

Rewriting an expression implies 
another circuit implementation
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Boolean Algebra – Application

• A circuit for a practical problem using Boolean algebra

Example: “When will I go carpooling ?” (Y):
- if Alex is going (A) and Ben is not going (B)
- for sure if Casper is going (C)”

Create a binary systems that decides when I will go

Y = ?

A B C    Y

0  0  0    0
0  0  1    1
0  1  0    0
0  1  1    1
1  0  0    1
1  0  1    1
1  1  0    0
1  1  1    1

When only inverters (NOT) and OR gates 
are available:

A B’ = ((A B’)’)’ = (A’ + (B’)’)’ = (A’ + B)’

Hence Y = A B’ + C = (A’ + B)’ + C

2 inverters (’) and 2 OR gates (+)

Corresponding Boolean expression:

Y = A B’ + C

A
B

C Y
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Boolean Algebra – Application

• Simplification of expressions

Carpool example: Suppose we start with the truth table.

A  B C    Y

0  0  0    0
0  0  1    1
0  1  0    0
0  1  1    1
1  0  0    1
1  0  1    1
1  1  0    0
1  1  1    1

Y = BC(A’ + A) + B’C(A’ + A) + AB’C’ 

= BC + B’C + AB’C’

= C(B + B’) + AB’C’ 

= C + AB’C’ 

= C + AB’  (because C + C’X= C + X, with X = AB’)

Simplify this to a Boolean expression:

Y = A’ B’ C + A’ B C + A B’ C’ + A B’ C + A B C

Minimization using Boolean properties:

33

Y = A’ B’ C + A’ B C + A B’ C’ + A B’ C + A B’ C + A B C

= BC(A’ + A) + B’C(A’ + A) + AB’(C+C’) 

= BC + B’C + AB’

= C(B + B’) + AB’ 

= C + AB’



Boolean Algebra – Compound operations

• As we will show later: in current technologies, NAND, NOR gates have better properties than AND, OR gates

NAND
X 
Y 

Z A NAND B = NOT (A  AND B) = (A . B)’

NOR
X 

Y 
Z A NOR B = NOT (A OR B) = (A + B)’

• Every Boolean expression can be expressed in NAND, NOR, NOT using De Morgan: 
A + B = ((A + B)’)’ = (A'.B')' 
OR is equivalent to NAND
with inverted inputs

A.B = ((A.B)’)’ = (A' + B')' 
AND is equivalent to NOR
with inverted inputs

• BTW: NOT = NAND or NOR with both inputs connected to each other (proof this using Boolean algebra!)

0  0
0  1
1  0
1  1

1
1
1
0

X  Y Z

0  0
0  1
1  0
1  1

1
0
0
0

X  Y Z
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Boolean Algebra – Compound operations

X 

Y 
Z 

XOR (eXclusive OR): X XOR Y = (NOT X) Y OR X (NOT Y)

X  Y = X’ Y + X Y'

0  0

0  1

1  0

1  1

0

1

1

0

X  Y Z

X 

Y 

Z 

XNOR: (X  Y)’ = (X’ Y + X Y')’ =   ...   = X’ Y’ + X Y  

0  0

0  1

1  0

1  1

1

0

0

1

X  Y Z
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0 1 0 1 0 1 

A B C 

0 

0 

Z 1 

Z 
2 

Z 
3 

0 

2-level realisation

(inverters don’t count)

compound gates 

(min. #  gates)

A 

0 

0 

0 

0 

1 

1 

1 

1 

B 

0 

0 

1 

1 

0 

0 

1 

1 

C 

0 

1 

0 

1 

0 

1 

0 

1 

Z 

0 

1 

0 

1 

0 

1 

1 

0 

(proof the equivalence

of the three realisation!)

Boolean Algebra

Example: alternative circuit realisations

multi-level realisation 

(using simple gates)
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Boolean Algebra – Simplification of Expressions

• Aim: reduce complexity of resulting circuit

• number operations/variables  = number gates and number gate inputs

• number bracket levels = number gate levels

• Background:
• less gate inputs           faster gates

• number of gate inputs in any case limited

• less gates         lower costs / less power usage

• less gate levels less delay times
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Question 2

What is a logic expression for the circuit below:

a. F = A’ B C + A B’ + A C’

b. F = A B C + A’ B’ + A’ C’

c. F = A B’ C’ + A B’ + A’ C

d. None of the above answers.

Let the output of the NAND be X = (B C)’.  Then

F = A X’ + A’ X

= A ((B C)’)’ + A’ (B C)’

= A B C + A’ (B’ + C’)

= A B C + A’ B’  + A’ C’

Hence answer b

A 

B 
F 

C 
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Summary

• System Descriptions

• Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL 

• System Types

• Combinational circuits

• Sequential circuits

• Boolean algebra

• Logic/Boolean operations

• Boolean simplification/minimization

• Prove system equivalence
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To do list

• Reading Material book “Digital Design”:

• Sections 2.1 and 2.3 (not yet 2.3.5) and 2.4

• Assignments for this lecture:

• Gated Practise Lecture 2

• Reading material for next lecture: Logic Minimization 

• Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9
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Thank you
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