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 System Descriptions
« Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL

« System Types
« Combinational circuits
« Sequential circuits

« Boolean Algebra
 Logic/Boolean operations

» Boolean simplification/minimization

* Prove system equivalence




Introduction

Digital Systems

Lecture 2 l Lectures 6-9 1

I Boolean Circuits I Sequential Logic
Lecture 3 ¥

I SystemVerilog I

Lecture 4 \ 4

I Logic Minimization I

Lecture 5 1

Combinational Modules,
Implementation Technology
and Floating Point Numbers




Lecture 1 (Mo) Lecture 2 (Tue) Mock-Up/ Exam

Intro Digital Systems

SystemVerilog

Combinational Modules,
Implementation Technology
and Floating Point Numbers

Boolean Circuits
Logic Minimization

GP-lecl, GP-lec2
GP-lec3, GP-lec4
GP-lec5

Course Lab Part 1

Mock Exam (Tuesday)
Discuss Mock Exam (Friday)

Partial Exam 1 (Friday)

Course Lab Part 2




Canonical Expressions Two-Level Networks
« Sum of Products
» Product of Sums

Two-Level Simplification
» Karnaug-maps

Multi-Level networks

 Factorization

« Mapping to NAND-NAND and NOR-NOR networks
« Mapping to AND-OR-inv and OR-AND-inv gates

Timing in Combinatorial Networks
Sections in book: 2.2, 2.3.5, 2.5, 2.7 and 2.9



Learning Objectives

As student you should be able to:

To use canonical expression (i.e., sum-of products and products-of-sum) to represent logic functions.
Minimize logic expressions using Karnaugh maps

Take advantage of don't care inputs to minimize logic expressions

Convert two-level and multi-level circuits to NAND or NOR equivalents

Map expressions to And-Or-Invert circuits and Or-And-Invert

Analyze the timing behaviour of circuits




EE1D1: Digital Systems A

Canonical Expressions




Canonical Expressions

« Expressions vs Truth Table
« Expression = unique truth table A BC F F
« Truth table = many alternative expressions
0 0O 0 1
« Canonical Form 0 01 0 1
 Unique standard form for expressions 8 i ? (1) (1)
« Truth table = unique canonical expression 10 0 1 0
_ 1 01 1 0
« We look at two canonical forms: 110 1 0
« Sum-of-Products 1 11 1 0
« Product-of-Sums
Sum-of-Products form: Products-of-Sum form:
011 100 101 110 111 000 001 010
F=A'BC + AB'C + AB'C + ABC + ABC F= ((A'B'C) ) e ((A'B'C)Y) o ((A'BCY)" )

F=ABC + ABC + ABC F= (A+B+C)e (A+B+C) e (A+B +0C)

000 001 010

A product term that contains each input A sum term that contains each input signal
signal exactly once is called a minterm exactly once is called a maxterm



Canonical expressions — Sum of Products

Truth Table Canonical form
A B C Minterms F F(ABC)=ABC+ABC+ABC+ABC+ABC
0 0O AB'C’' = m, 0 = M3+ M+ M5 + Mg + My
001 ABC =m, | 0
010 ABC' =m, | 0 = 2. m(3,4,5,6,7)
0 1 1 ABC =m; | 1
1 00 AB'C' = My 1 r — A B! 7 rp 7 ’
10 1 ABC = m. 1 F(ABC) =AB C+ABC+ABC
110 ABC' =m; | 1 _
111 | AaBC =m, | 1 = Mo+ My + My
=2 m(0,1,2)
Canonical form to minimal form sum of products Circuit
F=AB'(C+C) + ABC + AB(C'+ 0O B
=AB + AABC + AB ) F
=A(B' +B) + ABC C —
=A + A'BC —
=A + BC A




Canonical Expressions — Product of Sums

Truth Table Canonical form

M F P
ABC axterms FABC)=(A+B+C)A+B+C)Y(A+B" + Q)
00O A+B+C =M, | 0 1 B B
001 | Aa+B+c =m, |0 1 =11 M(0,1,2) = MoM; M,
010 A+B'+C =M, | 0 1
01 1 A+B’+C’ =M, 1 0
1 O 0 A,+B+C = M 1 O I 1 ] ] ] 1] ] ] ] 1 ]
10 1 A'+B+C’ =M: 10 F(ABCO=A+B+CYA+B+CO A +B+C)A"+B"+CO)(A'+B"+CYH
110 A'+B’+C =M, 1 0 B B
1 1 1 A’+B’+C’ = M7 1 O - H M(3,4,5,6,7) — M3 M4 M5 M6 M7
Canonical form to minimal form Product of Sums Circuit

F=(A+B+C)(A+B+C)(A+B'+C)
=(A+B+C)A+B+C)(A+B'+C)(A+B +C)
=(A+B)(A+ ()

=
S S

0> W>

Note: Y=(A+B)
(Y+C)(Y+C’) =YY + YC' + CY + CC’
=Y +YC'+YC=Y



Canonical Expressions

« Two-level Canonical Forms A B C -
e (Sum of Products)” = Product of Sums: 00 0O 01

0 01 01

F =m3+m4+m5+ mé6+ m7/ 010 01

=A'BC + ABC + ABC + ABC' + ABC 01 1 10

1 00 10

FF =(A'BC + AB'C' + ABC + ABC' + ABCY 1 01 10
=(A'BC)'(AB'C) (AB'C)Y (ABC)(ABC) 1 10 10

=(A+B' +C)(A+B+C)(A+B+C)(A"+B +C)(A'+B +C 111 10

— M3 M4 M5 M6 M7

e (Product of Sums)” = Sum of Products:

F =MOM1M2
=(A+B+CO)(A+B+CHY(A+B'+0O)

F={(A+B+C)(A+B+C)Y(A+B +QO)}
=(A+B+0O)'+ (A+B+CY+(A+B'+C)
=A'B'C + AAB'C + A'BC
=m0+ ml + m2



Canonical Expressions

« Alternative implementations of F

A | . }

B | = i

T ._3_ Canonical Sum of Products
C > E ) " /

_L> . J

Minimal Sum of Products

R
J
L j’t[>j2 /
D‘L Canonical Product of Sums
._._\L>_ E /

Minimal Product of Sums
3&1 /




Canonical Expressions

« Comparison timing behaviour

100

200

Apart from &iming glitches the behaviour is the same for different implementations




Canonical Expressions

« Incompletely specified functions

n-input function = 2" possible input combinations
not all possibilities are always relevant

Example: Binary-Coded-Decimal-Digit-Increment-by-1

inputs outputs
Digit | A B ¢ D |Digt|w x vy z
0|0 0 0 O 110 0 O input combinations for Z = 0:
110 0 0 1 2 (o o 1 [o] Off-set for Z
2 o 0 1 o0 310 0 1
310 0 1 1 4 |0 1 0 %
4 o 1 0 o0 510 1 0 . L
5 10 1 0 1 6 |lo 1 1 [ol input combinations for Z = 1:
6 o 1 1 0 710 1 1 On-set for Z
7 10 1 1 1 8|1 0 0 %
8 |1 0 0 o0 911 0 0 . .
9 |1 0 0 1 olo o o [0 input combinations for Z = X:
1 0 1 0 X X X [X] Don't care (DC) setfor Z
1 0 1 1 X X X [X , _
1 1 0 0 X X X |x X = don't care (value is not relevant)
1 1 0 1 X X X [X
1 1 1 0 X X X [X
1 1 1 1 X X X |[X
Z= Mo+ M+ ... + Mg+ d]_o + d11+ e F d15 =M, M3.u Mg D]_o Di1em D15

=
ﬁ
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Two-Level Simplification

Algebraic simplification
* No fixed procedure
« How do you know a minimal form has been reached?

Simplification of two-level networks using Karnaugh-maps (see next slides):
« Systematic method
« Always minimal form
« Limited to max. 4 or 5 inputs

Computer-Aided Design (CAD) Tools
« Optimal simplifications require a lot of computation power, especially for functions with many inputs (>10)

» Therefore sub-optimal solutions are calculated
» less computation time needed
« solutions are not optimal but (usually) acceptable

Manual Simplification Still Useful Though
« For small circuits: manual simplification gives more insight
« Insight in CAD tools (espresso, Quartus, ISE)
 Possibility to check CAD results (for small circuits)
« No CAD tools available during the exam ...



Two-Level Simplification — Simplification Principle

A B F B values are different within on-set rows
8 ? 8 A values are not different within on-set rows
1 0 1 ... ]
1 1 1 B is eliminated, A remains
F=AB + AB = A(B+B) = A
A B G B values are not different within on-set rows
|g| 0] 1 A values are different within on-set rows
0 1 0
[0] 1 A is eliminated, B remains
1 1 0 G=A'B'"+ AB' = (A'+A)B = B

The essence of simplification!
 Find two input combinations of the ON-set where only one variable has a different value.
 This variable apparently doesn’t make a difference and can be eliminated.



« K-Maps
« Alternative method to represent truth tables, such that between 2 “neighbours” exactly one input variable
changes its value.

« If neighbours have the same output value: the input variable that changes can be eliminated

F

2-variable
K-map

2

3

_—OoOOo|P>

RO, O |

—

<

A

\

number in cell denotes index minterm, e.g m;

0
0

3-variable

K-map

Neighbours in K-maps:

o first-last column are also neighbour

e top-bottom row are also neighbour

01

A

Two-level simplification — Karnaugh Maps (K-maps)

10

2

4

5

e exactly one variable changes between neighbours

(@]

NouhwNnrRo |3
OGN X =X=X=N F.<
R~oOoOrRrR~RoOoO|W
HFOHH,ROHFL,OKFO



Two-Level Simplification — Karnaugh Maps (K-maps)

A A
« Examples B 0o 1 BN 0
11 0 |1 F=A 110 | o G=B
AB A
. o o1 1 10 AB A
cin o\ 00 01 11 10
ol o | ol 4 0
ol o| o 1 | 1
1
o i 1l o | o 1| 1
| |
B L |
Cout=A'B Cin + AB’Cin + AB Cin’+AB Cin B
Cout=AB + BCin + ACin F(A,B,C)=A

* Definitions/Observations
* Product term (implicant) < Rectangle with 1's
* Rectangle with 1's larger & Corresponding product term smaller !
* Only rectangles corresponding to products terms (with 1, 2, 4, 8 ... (2") 1's) can be used



Two-Level Simplification — Karnaugh Maps (K-maps)

« Example derivation minimal sum for 4 variables

F(A,B,C,D) = 2 m(0,2,3,5,6,7,8,10,11,14,15)
A

AB ——— F=C+ A'BD+ B'D’
co\. 00 01 11 10

00| 1 0 0 1

01] O 1 0 0

111 1 1 1

10| |1 1 1 1

« Minimal sum of products:
 Find the lowest number of rectangles as large as possible, that covers the ON-set
» Because: less rectangles = less product terms
« larger rectangle = less variables in product term



Two-Level Simplification — Recipe Minimal Sum of Products

 Recipe:
1. Find all maximally large rectangles covering 1's: prime implicants.

2. Find all prime implicants that are the only ones that cover a certain 1: essential prime implicants.
The essential prime implicants are for sure a product term part of the minimal expression.

3. Cover the remaining 1’s using as less as possible non-essential prime implicants. These prime implicants
represent the other product terms part of the minimal expression.

0 D F= BC'+AC +A’'B’'D




Two-Level Simplification — Question 1

What is a minimal sum of products for the K-map below?

AB —1

co\. 00 01 11 10
AD +AC+CD+ABD

— a.

oof 0 | o [l1]f o b. AC+CD+ABC D'
d. There is no correct answer listed
11[1 1J| 1 1] above.
C
10l o | o [[[1 1J
—————— AC+AD+ABD
B

Hence answer d



Two-Level Simplification

« Dual method: minimal product of sums vs sum of products

A

AB [ |
oD\ 00 01 11 10

00| 1 0 0 1

01010@_
D

111 1 1 1 1

10| 1 1 1 1

F=(B+C+D)(A+C+D)(B+C+D)

This method can be explained as follows:
(FY=(BCD'+ACD+B C'D)
F=(B+C+D)(A+C+D)(B+C+D)

B=1, C=0, D=0
A=1, C=0, D=1

B=0, C=0, D=1

11| O 0 0 0

10| O 0 0 0

B
F=BCD +AC'D +B C’'D




Two-Level Simplification

 Don’t Cares
* Don't cares should be used as 1 or 0 to obtain better results

AB \ A 1
CD o0 01 11 10 5
ol olollx1 o F(A,B,C,D) = > m(1,3,5,7,9) + > d(6,12,13)

- via K—map:

O ql1r 1l 11 x |l 1

D F=A'"D + B'C'D without don't cares

c 11 1 0 0 F=A"D + C' D using don't cares

101 O X 0 0

A
AB . !

— oD\ 00 01 11 10
ooljo | o |[[X ] o

Via dual method: o1l 1 1 | X 1
D
F=D (A + C) 11l 1| 1 |[o]oO

Hence even less terms C

10110 X 0 0




Two-Level Simplification — Summary Two-Level Networks

e Primitives:
« INVERTER, AND, OR

 Canonical forms:
« Sum of Products (minterms), Product of Sums (maxterms) , incl. don't cares

* Logical simplification:
« 2-level realisation with minimum number of gates and/or gate inputs
» K-map method (incl. dual method)
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Multi-Level Networks — Advantages

Consider following sum of products form (already 2-level reduced!):

X=ADF + AEF + BDF + BEF + CDF + CEF + G

¢ 6 x 3-input AND gates + 1 x 7-input OR gate (often not available)
e 25 connections (19 literals plus 6 internal connections)

e 1 x 3-input OR, 2 x 2-input OR, 1 x 3-input AND

e 10 connections (7 literals plus 3 intern)

A___ A__
D_| 1 B
F —3 C:D_L
A__
=De - DD
F__|
B__ F [
D_| 3 G
F__|
EE;_ 4 \ 5 X Conversion to factorised form gives more
F_| / ) levels, but also a smaller circuit:
cC__. X=(A+B+C)(D+E)F + G
D—| 5
ﬂf

C

E

" So factorization may provide better result.
G However, no systematic way to do it




Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

« Conversion
e Initial network often expressed in ANDs and ORs (canonical form)

o Preferred gates for implementation are however NANDs en NORs (better technological properties)

e Hence we will rewrite AND/OR expressions to expressions that can be used for implementation with
NANDs and/or NORs




Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

De Morgan’s law: (A+B) = A'eB = A+B= (A«B')

(AeB) = A"+ P = AeB = (A" + B

Hence:

NOR is equivalent to an AND with inverted inputs
OR is equivalent to a NAND with inverted inputs

NAND is equivalent to an OR with inverted inputs

AND is equivalent to a NOR with inverted inputs

A A

B— O— B

A — A A— A

B— o= B B B o—




Multi-Level Networks

 Application: Conversion AND/OR network to NAND/NAND network

A
B — Z

:D\ AB+CD
=

D — |

g:j—_cj_z (AB+CD)”
[c) :j_—o ((AB)" « (CD)")

A In a similar way an
B___ Jo—— v OR/AND network
> o— can be converted
C__|
5] > to a NOR/NOR
network




Multi-Level Networks

 Recipe implementation in NAND/NAND (NOR/NOR) circuit
» Create K-map
« Derive minimal sum of products (product of sums)

» Possibly apply factorisations
« Convert to NAND/NAND (NOR/NOR)

(see previous slides)




Multi-Level Networks — Question 2

What is an alternative for the circuit below?




Multi-Level Networks — AND-OR-Invert & OR-AND-Invert gates

Besides NAND and NOR gates, also AOI and OAI gates are preferred
over AND or OR gates.

S | &
B — 2x2 AOI Schematic —
Z Symbol | + -
C— &
D | —

:D_ 2x2 OAI Schematic ~ —
—Z Symbol 1 &P




Multi-Level Networks — Implementation Examples

F=AXORB' A

& A XOR B
F'= (AXORBY = (A'B+ ABY B 1+ b
A e
=(A+B)(A'+B)=AB + A'B B —
‘F=Z m(2,4,6,7)I —~ F' =2, m(0,1,3,5) |F= HM(0,1,3,5)I = F =TI M(2,4,6,7)
AB A
[ ] A — AB A A —
N 2 1t 19 J A\ 00 017iT 10 .
Ol 9190 i,: F o[ 1 [0 [[o[] 0 o F
| & | + + | &
T o joy c - P~ 1] 1|loff 1 c - o
I
l B B' : & l B | BI: +

F=A'B"+A'C+B'C

F=A+B)A+C) (B'+C)
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Timing in Combinatorial Circuits

« Time response of gates

In —[>o- Out - High
In  50% \ 50%
\ Low

900/0_’3\\ 5o High
50% \ Z 50%
Out . \

10%. " N J 10% Low

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ey

Higher output load (fan-out) ToHo ToLH
T; : fall time H-L transition T, : rise time L-H transition
TphL + propagation time H-L transition Toin - propagation time L-H transition

Often nominal, minimum and maximum values per gate type
Propagation time e.g. TpHL = 2.0 + 1.2 x L ps, with L load




Timing in combinatorial circuits

« Time response of combinatorial circuits

INV  :Tpy :14ps T, - 18ps
EXOR @ Ty :40ps Ty 52ps
0 — 1(0ps) 1— 0 (14ps) NAND : Ty : 20ps Ty : 30ps

A
ij 0 — 1(66ps)
N 1 — 0 (86ps)
: ] O

Propagation times add to each other

D 1 — 0 (40ps)
B L—A

: 1— 0 (20ps) — 1 (70ps)
0 — 1 (Ops) F
spike/glitch (1-0-1) at the output!
I




Timing in combinatorial circuits

 How to fix Glitches?

Glitches usually cause no problems, but we will show how to fix them

Critical Path

A=0 0->1

B=1->0— n1
Y=1>0->1

n2

c=1 /’ >0

v Short Path B
AB
C 00 01 11 10 s \%\

0 0 0

Cl e S

Y=AB+BC Time

aD




Timing in combinatorial circuits

« Fixing the Glitch

A=0—
B=1->0

Y=1
=1 By
LAY:
C 00 01 11 10
0 /? 0 0 0
Because of the redundant term A’ C, the
change on B has no effect when A=0 and C=1 ’ f1 ’ ’ 0
P

AC Y=AB+BC + AC




Timing in Combinatorial Circuits

 Application of spikes: pulse generator

e

statictheory: F=A"e A =0

O 0OwW >r

r

D stays 1 during 3 gate delays : .
after A changes from 0 to 1 Hence F is not always 0 ==> pulse



« Canonical expressions two-level networks
« Sum of Products
« Product of Sums

« Two-level simplification

 Multi-level networks
+ Factorization
« Mapping to NAND-NAND and NOR-NOR networks
« Mapping to AND-OR-INV and OR-AND-INV gates

« Timing in combinatorial networks

« Time response of gates
« Time response of combinatorial circuits
« Fixing the Glitch



To do list

« Reading Material book "Digital Design”:
« Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

« Assignments for this lecture:
 Gated Practise Lecture 3




Thank you
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