

EE1D1: Digital Systems A

BSc. EE, year 1, 2025-2026, lecture 4

Logic Minimization

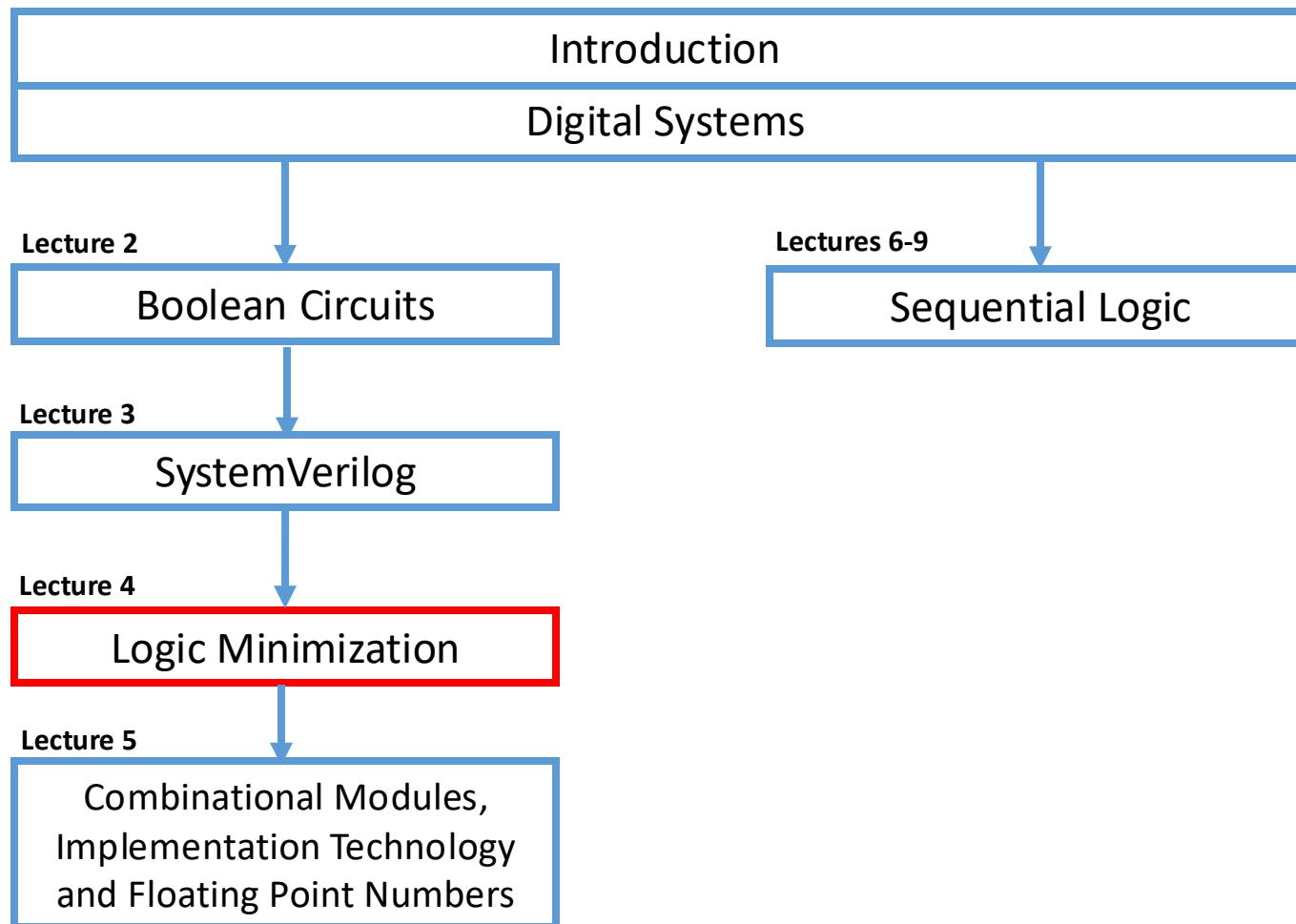
Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science

Recap

- **System Descriptions**
 - Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL
- **System Types**
 - Combinational circuits
 - Sequential circuits
- **Boolean Algebra**
 - Logic/Boolean operations
 - Boolean simplification/minimization
 - Prove system equivalence

Recap



Recap

Week	Lecture 1 (Mo)	Lecture 2 (Tue)	Assignments	Mock-Up/Exam
1.1	Intro Digital Systems	Boolean Circuits	GP-lec1, GP-lec2	
1.2	SystemVerilog	Logic Minimization	GP-lec3, GP-lec4	
1.3	Combinational Modules, Implementation Technology and Floating Point Numbers		GP-lec5 Course Lab Part 1	
1.4			Course Lab Part 2	Mock Exam (Tuesday) Discuss Mock Exam (Friday)
1.5				Partial Exam 1 (Friday)

Outline

Canonical Expressions Two-Level Networks

- Sum of Products
- Product of Sums

Two-Level Simplification

- Karnaugh-maps

Multi-Level networks

- Factorization
- Mapping to NAND-NAND and NOR-NOR networks
- Mapping to AND-OR-inv and OR-AND-inv gates

Timing in Combinatorial Networks

Sections in book: 2.2, 2.3.5, 2.5, 2.7 and 2.9

Learning Objectives

As student you should be able to:

- To use canonical expression (i.e., sum-of products and products-of-sum) to represent logic functions.
- Minimize logic expressions using Karnaugh maps
- Take advantage of don't care inputs to minimize logic expressions
- Convert two-level and multi-level circuits to NAND or NOR equivalents
- Map expressions to And-Or-Invert circuits and Or-And-Invert
- Analyze the timing behaviour of circuits

EE1D1: Digital Systems A

Canonical Expressions

Canonical Expressions

- Expressions vs Truth Table
 - Expression \Rightarrow unique truth table
 - Truth table \Rightarrow many alternative expressions
- Canonical Form
 - Unique standard form for expressions
 - Truth table \Rightarrow unique canonical expression
- We look at two canonical forms:
 - Sum-of-Products
 - Product-of-Sums

A	B	C	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Sum-of-Products form:

$$0 \ 1 \ 1 \quad 1 \ 0 \ 0 \quad 1 \ 0 \ 1 \quad 1 \ 1 \ 0 \quad 1 \ 1 \ 1$$

$$F = A' B C + A B' C' + A B' C + A B C' + A B C$$

$$F' = A' B' C' + A' B' C + A' B C$$

$$0 \ 0 \ 0 \quad 0 \ 0 \ 1 \quad 0 \ 1 \ 0$$

Products-of-Sum form:

$$0 \ 0 \ 0 \quad 0 \ 0 \ 1 \quad 0 \ 1 \ 0$$

$$F = ((A' B' C')') \cdot ((A' B' C)') \cdot ((A' B C)')$$

$$F = (A + B + C) \cdot (A + B + C') \cdot (A + B' + C)$$

A product term that contains each input signal exactly once is called a **minterm**

A sum term that contains each input signal exactly once is called a **maxterm**

Canonical expressions – Sum of Products

Truth Table

A	B	C	Minterms	F
0	0	0	$A'B'C' = m_0$	0
0	0	1	$A'B'C = m_1$	0
0	1	0	$A'BC' = m_2$	0
0	1	1	$A'BC = m_3$	1
1	0	0	$AB'C' = m_4$	1
1	0	1	$AB'C = m_5$	1
1	1	0	$ABC' = m_6$	1
1	1	1	$ABC = m_7$	1

Canonical form

$$F(A,B,C) = A'B'C + A'B'C' + A'B'C + A'BC' + A'BC$$

$$= m_3 + m_4 + m_5 + m_6 + m_7$$

$$= \sum m(3,4,5,6,7)$$

$$F'(A,B,C) = A'B'C' + A'B'C + A'BC'$$

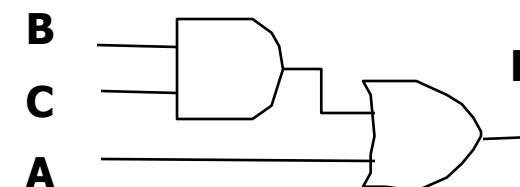
$$= m_0 + m_1 + m_2$$

$$= \sum m(0,1,2)$$

Canonical form to minimal form sum of products

$$\begin{aligned} F &= A B' (C + C') + A' B C + A B (C' + C) \\ &= A B' + A' B C + A B \\ &= A (B' + B) + A' B C \\ &= A + A' B C \\ &= A + B C \end{aligned}$$

Circuit



Canonical Expressions – Product of Sums

Truth Table					
A	B	C	Maxterms	F	F'
0	0	0	$A+B+C$ = M_0	0	1
0	0	1	$A+B+C'$ = M_1	0	1
0	1	0	$A+B'+C$ = M_2	0	1
0	1	1	$A+B'+C'$ = M_3	1	0
1	0	0	$A'+B+C$ = M_4	1	0
1	0	1	$A'+B+C'$ = M_5	1	0
1	1	0	$A'+B'+C$ = M_6	1	0
1	1	1	$A'+B'+C'$ = M_7	1	0

Canonical form

$$\begin{aligned}
 F(A,B,C) &= (A + B + C) (A + B + C') (A + B' + C) \\
 &= \prod M(0,1,2) = M_0 M_1 M_2
 \end{aligned}$$

$$\begin{aligned}
 F'(A,B,C) &= (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C') \\
 &= \prod M(3,4,5,6,7) = M_3 M_4 M_5 M_6 M_7
 \end{aligned}$$

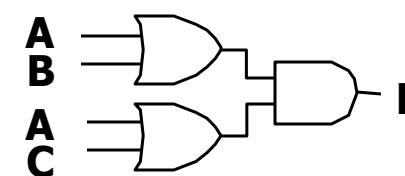
Canonical form to minimal form Product of Sums

$$\begin{aligned}
 F &= (A + B + C) (A + B + C') (A + B' + C) \\
 &= (A + B + C) (A + B + C') (A + B' + C) (A + B + C) \\
 &= (A + B) (A + C)
 \end{aligned}$$

Note: $Y = (A + B)$

$$\begin{aligned}
 (Y+C)(Y+C') &= YY + YC' + CY + CC' \\
 &= Y + YC' + CY = Y
 \end{aligned}$$

Circuit



Canonical Expressions

- Two-level Canonical Forms

- (Sum of Products)' \Rightarrow Product of Sums:

$$\begin{aligned} F &= m3 + m4 + m5 + m6 + m7 \\ &= A' B C + A B' C' + A B' C + A B C' + A B C \end{aligned}$$

$$\begin{aligned} F' &= (A' B C + A B' C' + A B' C + A B C' + A B C)' \\ &= (A' B C)' (A B' C')' (A B' C)' (A B C)' (A B C)' \\ &= (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C') \\ &= M_3 M_4 M_5 M_6 M_7 \end{aligned}$$

- (Product of Sums)' \Rightarrow Sum of Products:

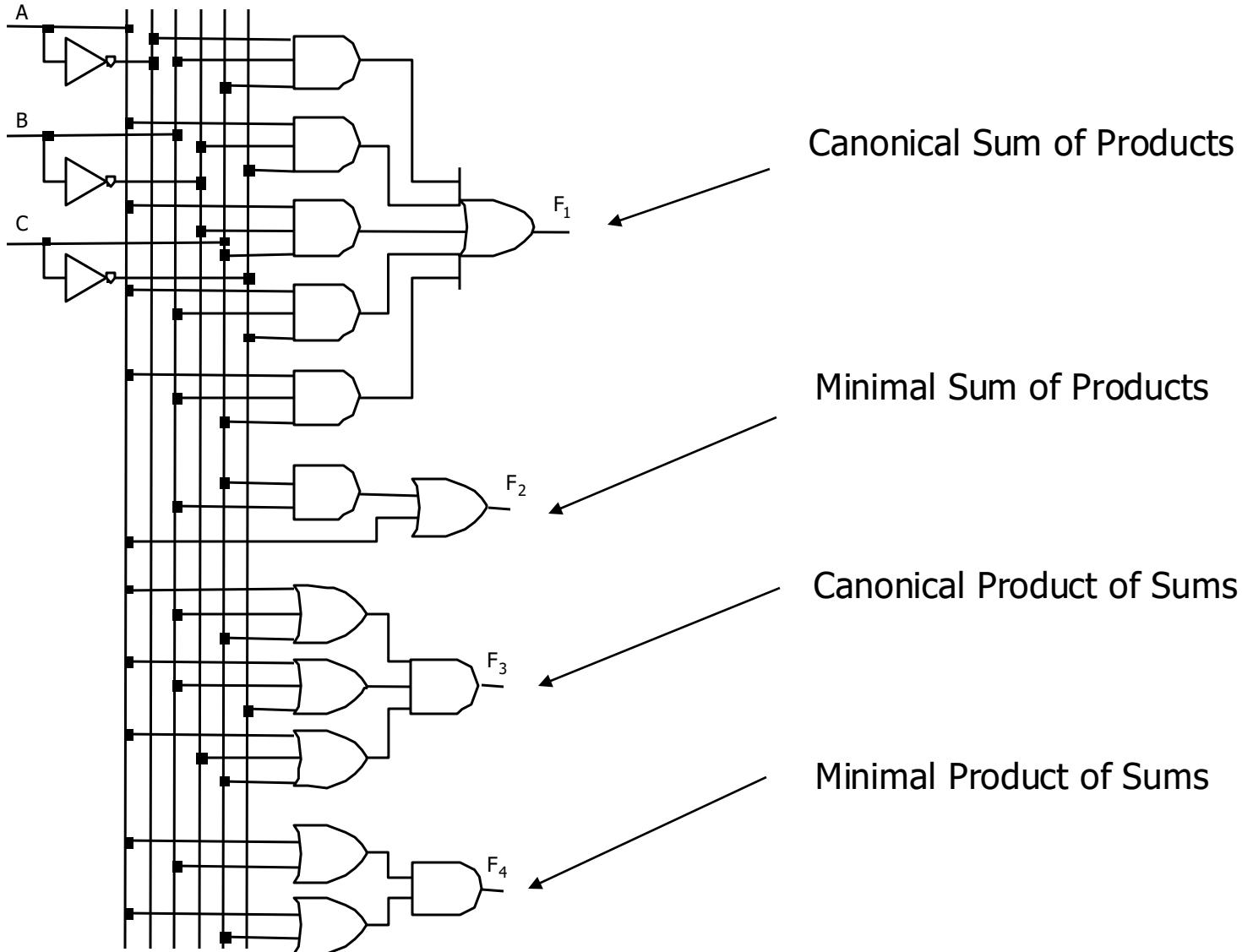
$$\begin{aligned} F &= M_0 M_1 M_2 \\ &= (A + B + C) (A + B + C') (A + B' + C) \end{aligned}$$

$$\begin{aligned} F' &= \{(A + B + C) (A + B + C') (A + B' + C)\}' \\ &= (A + B + C)' + (A + B + C')' + (A + B' + C)' \\ &= A' B' C' + A' B' C + A' B C' \\ &= m0 + m1 + m2 \end{aligned}$$

A	B	C	F	F'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

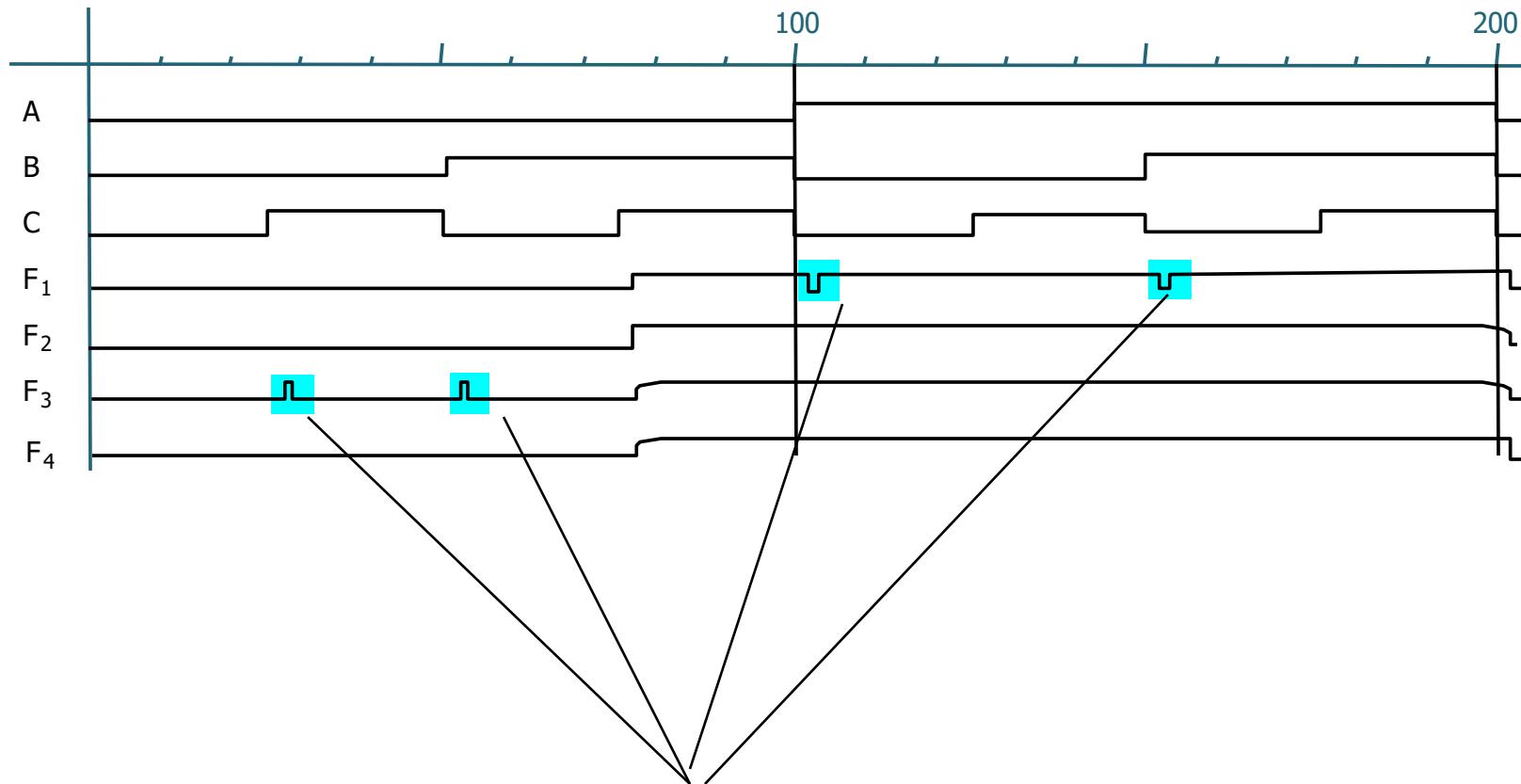
Canonical Expressions

- Alternative implementations of F



Canonical Expressions

- Comparison timing behaviour



Apart from *timing glitches* the behaviour is the same for different implementations

Canonical Expressions

- Incompletely specified functions

n -input function $\Rightarrow 2^n$ possible input combinations
not all possibilities are always relevant

Example: Binary-Coded-Decimal-Digit-Increment-by-1

Digit	inputs				Digit	outputs			
	A	B	C	D		W	X	Y	Z
0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	2	0	0	1	0
2	0	0	1	0	3	0	0	1	1
3	0	0	1	1	4	0	1	0	0
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	6	0	1	1	0
6	0	1	1	0	7	0	1	1	1
7	0	1	1	1	8	1	0	0	0
8	1	0	0	0	9	1	0	0	1
9	1	0	0	1	0	0	0	0	0
	1	0	1	0	X	X	X	X	
	1	0	1	1	X	X	X	X	
	1	1	0	0	X	X	X	X	
	1	1	0	1	X	X	X	X	
	1	1	1	0	X	X	X	X	
	1	1	1	1	X	X	X	X	

input combinations for $Z = 0$:
Off-set for Z

input combinations for $Z = 1$:
On-set for Z

input combinations for $Z = X$:
Don't care (DC) set for Z

X = don't care (value is not relevant)

$$Z = m_0 + m_2 + \dots + m_8 + d_{10} + d_{11} + \dots + d_{15} = M_1 M_3 \dots M_9 D_{10} D_{11} \dots D_{15}$$

EE1D1: Digital Systems A

Two-Level Simplification

Two-Level Simplification

- Algebraic simplification
 - No fixed procedure
 - How do you know a minimal form has been reached?
- Simplification of two-level networks using Karnaugh-maps (see next slides):
 - Systematic method
 - Always minimal form
 - Limited to max. 4 or 5 inputs
- Computer-Aided Design (CAD) Tools
 - Optimal simplifications require a lot of computation power, especially for functions with many inputs (>10)
 - Therefore sub-optimal solutions are calculated
 - less computation time needed
 - solutions are not optimal but (usually) acceptable
- Manual Simplification Still Useful Though
 - For small circuits: manual simplification gives more insight
 - Insight in CAD tools (espresso, Quartus, ISE)
 - Possibility to check CAD results (for small circuits)
 - No CAD tools available during the exam ...

Two-Level Simplification – Simplification Principle

A	B	F
0	0	0
0	1	0
1	0	1
1	1	1

B values are different within on-set rows

A values are not different within on-set rows

B is eliminated, A remains

$$F = A B' + A B = A (B' + B) = A$$

A	B	G
0	0	1
0	1	0
1	0	1
1	1	0

B values are not different within on-set rows

A values are different within on-set rows

A is eliminated, B remains

$$G = A' B' + A B' = (A' + A) B' = B'$$

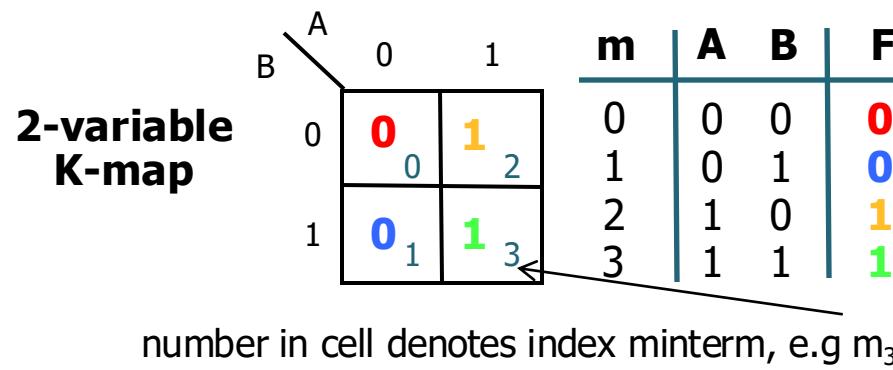
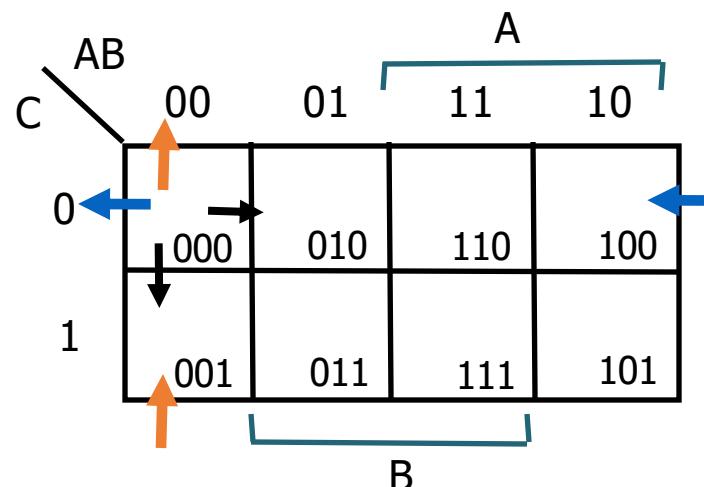
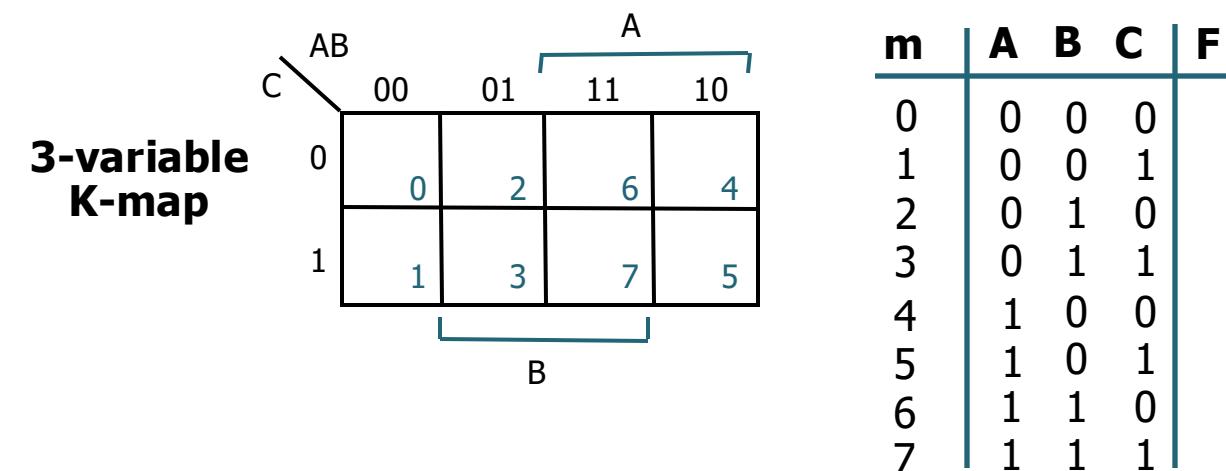
The essence of simplification!

- Find two input combinations of the ON-set where only one variable has a different value.
- This variable apparently doesn't make a difference and can be eliminated.

Two-level simplification – Karnaugh Maps (K-maps)

- K-Maps

- Alternative method to represent truth tables, such that between 2 “neighbours” exactly one input variable changes its value.
- If neighbours have the same output value: the input variable that changes can be eliminated



Neighbours in K-maps:

- exactly one variable changes between neighbours
- first-last column are also neighbour
- top-bottom row are also neighbour

Two-Level Simplification – Karnaugh Maps (K-maps)

- Examples

A	0	1
B	0	1
1	0	1

$$F = A B' + A B$$
$$F = A$$

A	0	1
B	0	1
1	0	0

$$G = A' B' + A B'$$
$$G = B'$$

A	00	01	11	10
B	0	0	1	0
Cin	0	1	1	1

$$\text{Cout} = A' B \text{ Cin} + A B' \text{ Cin} + A B \text{ Cin}' + A B \text{ Cin}$$
$$\text{Cout} = \text{A' B} + \text{B Cin} + \text{A Cin}$$

A	00	01	11	10
B	0	0	1	1
C	0	0	1	1

$$F(A,B,C) = A$$

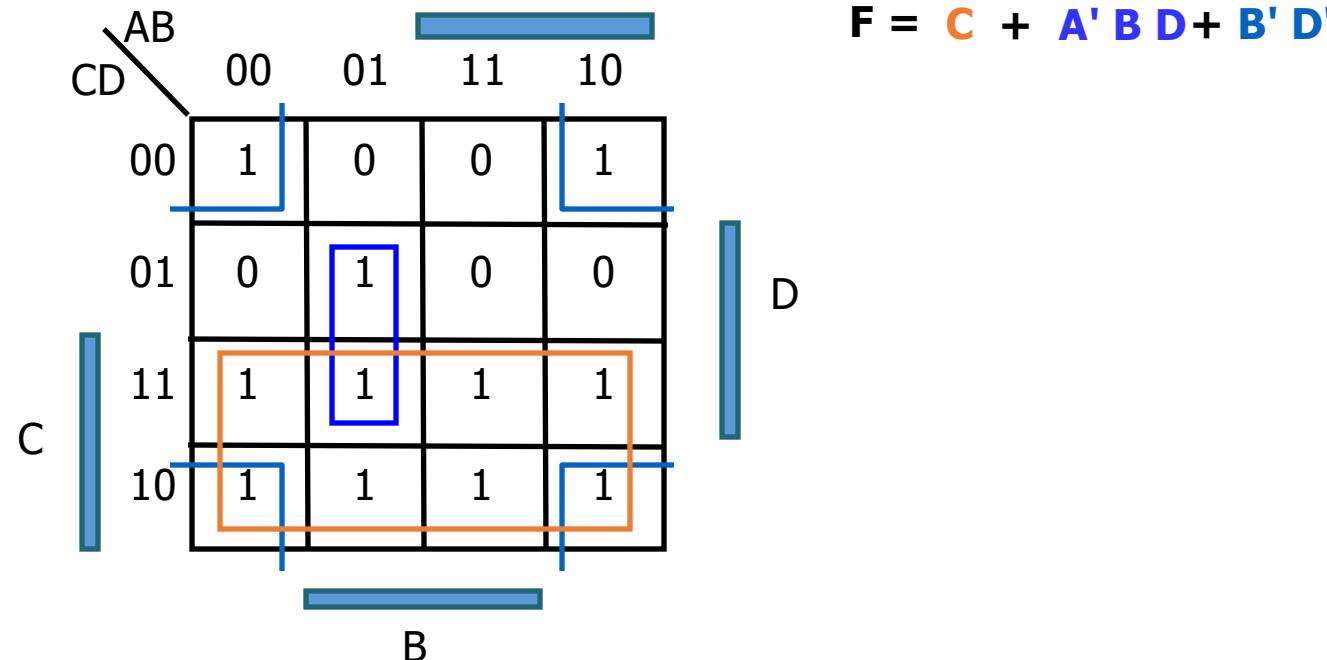
- Definitions/Observations

- Product term (implicant) \Leftrightarrow Rectangle with 1's
- Rectangle with 1's larger \Leftrightarrow Corresponding product term smaller !
- Only rectangles corresponding to products terms (with 1, 2, 4, 8 ... (2^n) 1's) can be used

Two-Level Simplification – Karnaugh Maps (K-maps)

- Example derivation minimal sum for 4 variables

$$F(A,B,C,D) = \sum m(0,2,3,5,6,7,8,10,11,14,15)$$



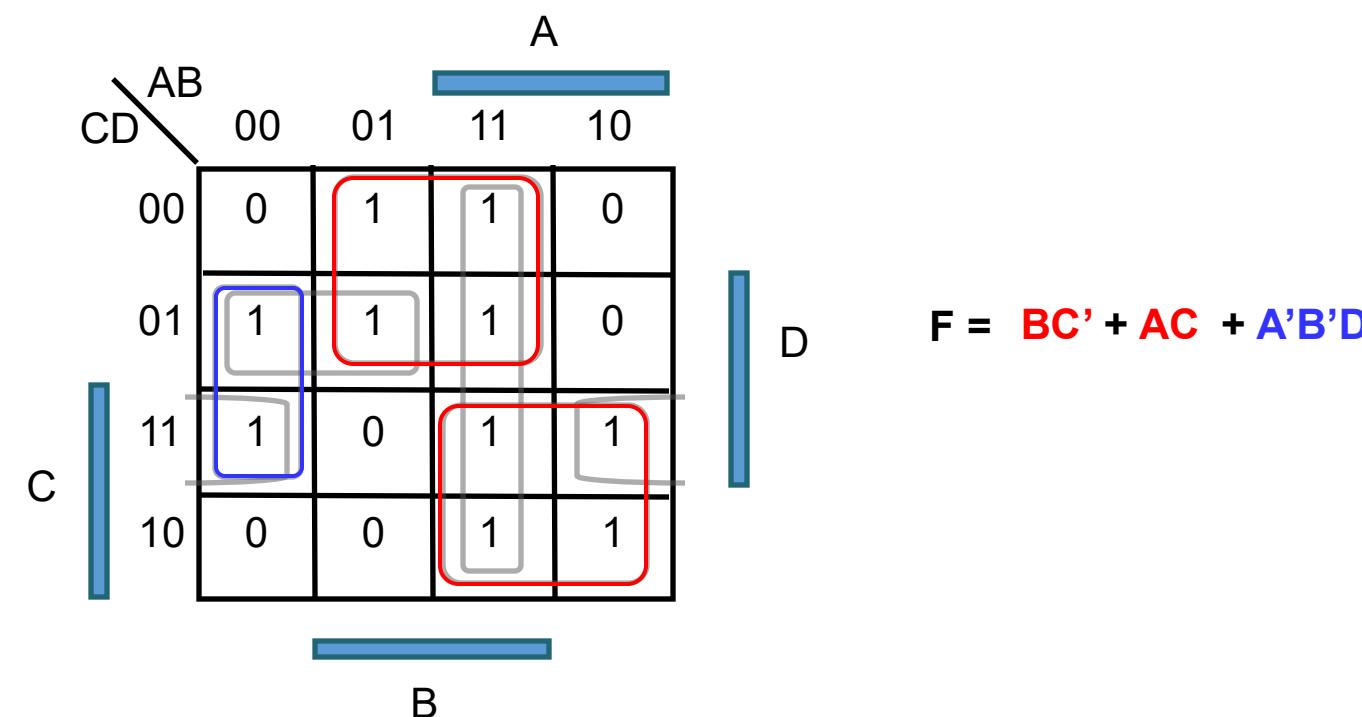
- Minimal sum of products:

- Find the **lowest number** of rectangles as **large** as possible, that covers the ON-set
- Because: less rectangles = less product terms
- larger rectangle = less variables in product term

Two-Level Simplification – Recipe Minimal Sum of Products

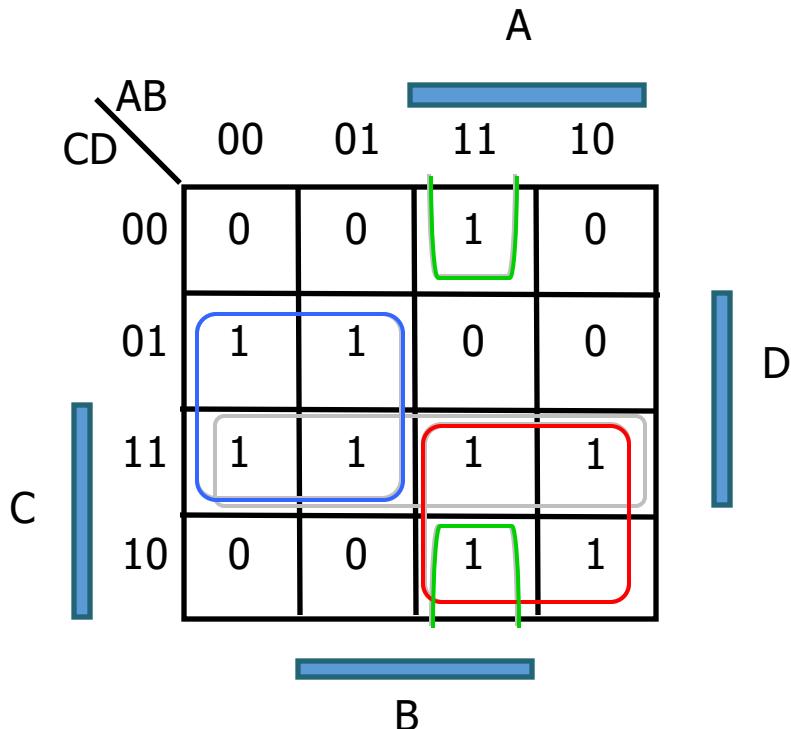
- Recipe:

1. Find all maximally large rectangles covering 1's: **prime implicants**.
2. Find all prime implicants that are the only ones that cover a certain 1: **essential prime implicants**.
The essential prime implicants are for sure a product term part of the minimal expression.
3. Cover the remaining 1's using as less as possible **non-essential prime implicants**. These prime implicants represent the other product terms part of the minimal expression.



Two-Level Simplification – Question 1

What is a minimal sum of products for the K-map below?



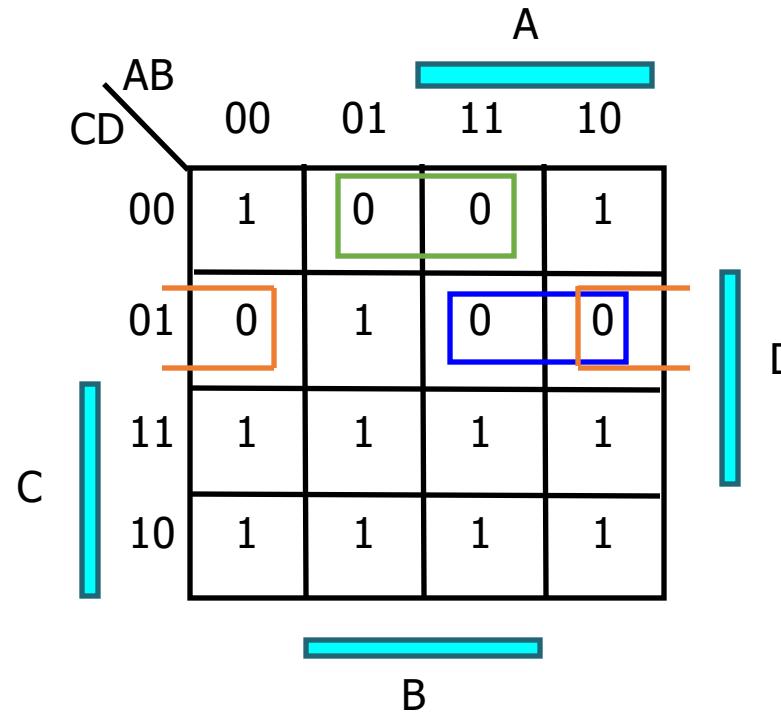
- a. $A'D' + AC + CD + ABD'$
- b. $AC + CD + ABC'D'$
- c. $AC + A'D + ABC'D'$
- d. There is no correct answer listed above.

$AC + A'D + ABD'$

Hence answer d

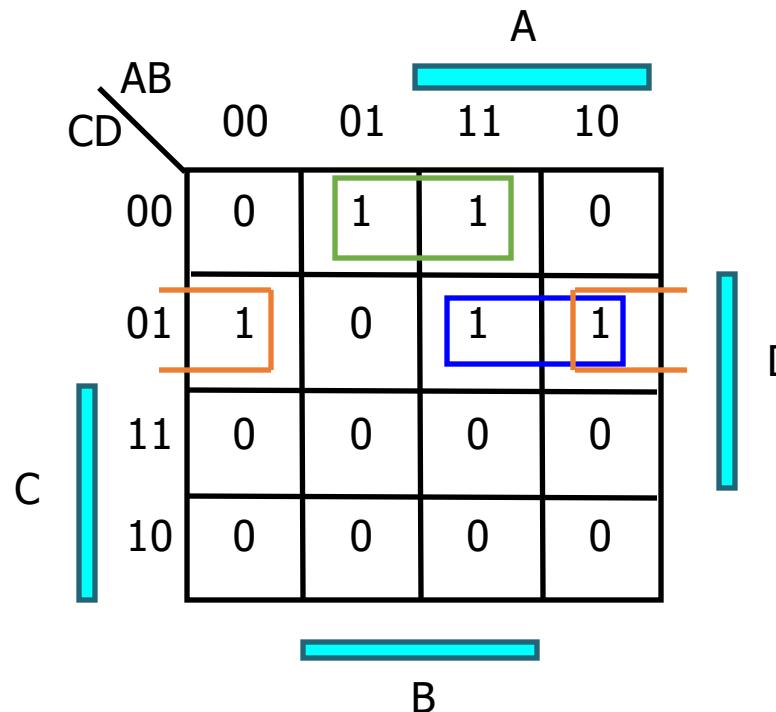
Two-Level Simplification

- Dual method: minimal *product of sums* vs *sum of products*



$$F = (B' + C + D)(A' + C + D')(B + C + D')$$

$$\begin{aligned} B=1, C=0, D=0 \\ A=1, C=0, D=1 \\ B=0, C=0, D=1 \end{aligned}$$



$$F' = B C' D' + A C' D + B' C' D$$

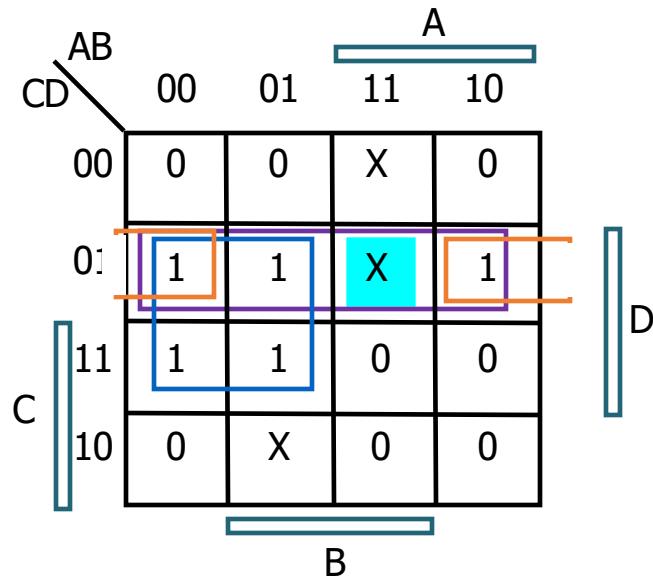
This method can be explained as follows:

$$(F')' = (B C' D' + A C' D + B' C' D)'$$

$$F = (B' + C + D)(A' + C + D')(B + C + D')$$

Two-Level Simplification

- Don't Cares
 - Don't cares should be used as 1 or 0 to obtain better results



$$F(A,B,C,D) = \sum m(1,3,5,7,9) + \sum d(6,12,13)$$

via K-map:

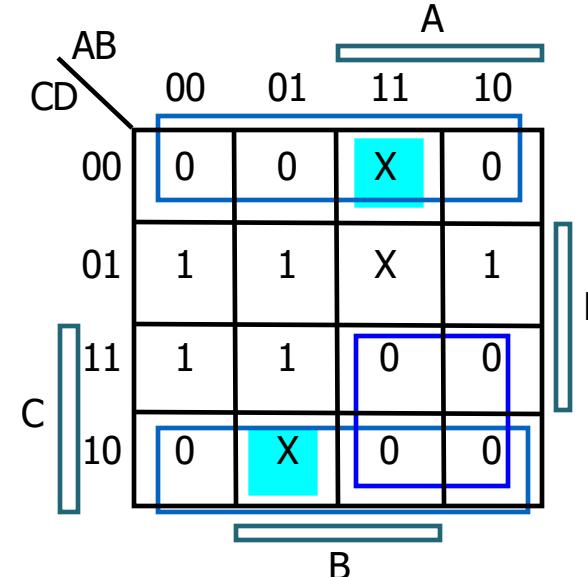
$$F = A'D + B'C'D \text{ without don't cares}$$

$$F = A'D + C'D \text{ using don't cares}$$

Via dual method:

$$F = D(A' + C')$$

Hence even less terms



Two-Level Simplification – Summary Two-Level Networks

- **Primitives:**
 - INVERTER, AND, OR
- **Canonical forms:**
 - Sum of Products (minterms), Product of Sums (maxterms) , incl. don't cares
- **Logical simplification:**
 - 2-level realisation with minimum number of gates and/or gate inputs
 - K-map method (incl. dual method)

EE1D1: Digital Systems A

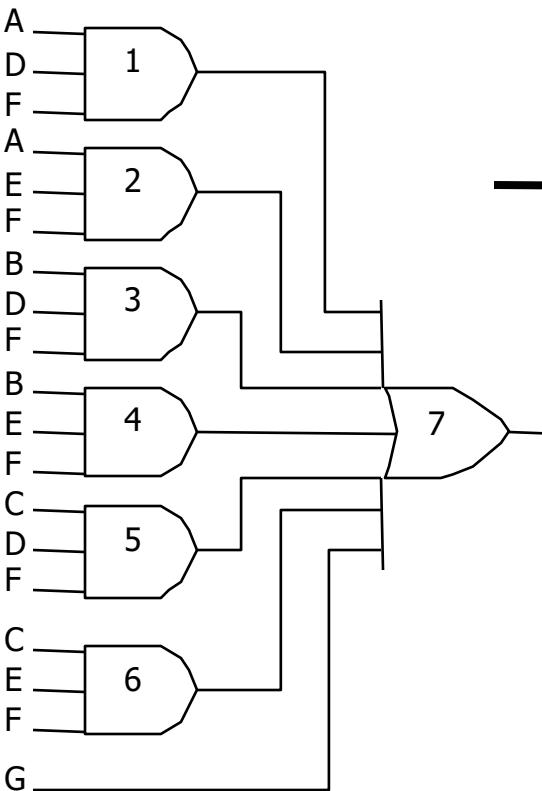
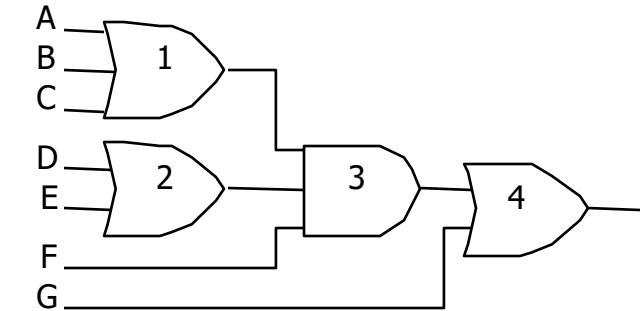
Multi-Level Networks

Multi-Level Networks – Advantages

Consider following sum of products form (already 2-level reduced!):

$$X = ADF + AEF + BDF + BEF + CDF + CEF + G$$

- 6 x 3-input AND gates + 1 x 7-input OR gate (often not available)
- 25 connections (19 literals plus 6 internal connections)



Conversion to factorised form gives more levels, but also a smaller circuit:

$$X = (A + B + C)(D + E)F + G$$

- 1 x 3-input OR, 2 x 2-input OR, 1 x 3-input AND
- 10 connections (7 literals plus 3 intern)

So factorization may provide better result.
However, no systematic way to do it

Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

- Conversion
 - Initial network often expressed in ANDs and ORs (canonical form)
 - Preferred gates for implementation are however NANDs en NORs (better technological properties)
 - Hence we will rewrite AND/OR expressions to expressions that can be used for implementation with NANDs and/or NORs

Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

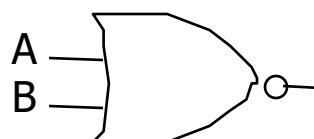
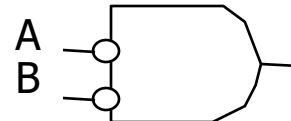
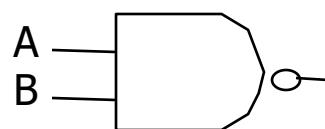
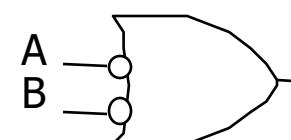
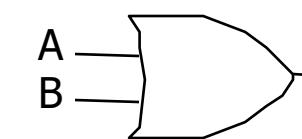
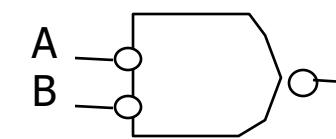
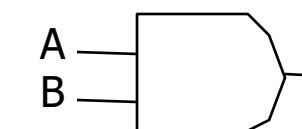
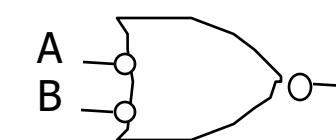
De Morgan's law:

$$(A + B)' = A' \cdot B' \Rightarrow A + B = (A' \cdot B')'$$

$$(A \cdot B)' = A' + B' \Rightarrow A \cdot B = (A' + B')'$$

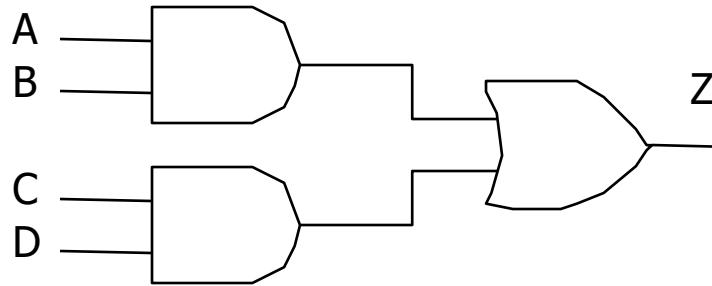
Hence:

- NOR is equivalent to an AND with inverted inputs
- OR is equivalent to a NAND with inverted inputs
- NAND is equivalent to an OR with inverted inputs
- AND is equivalent to a NOR with inverted inputs

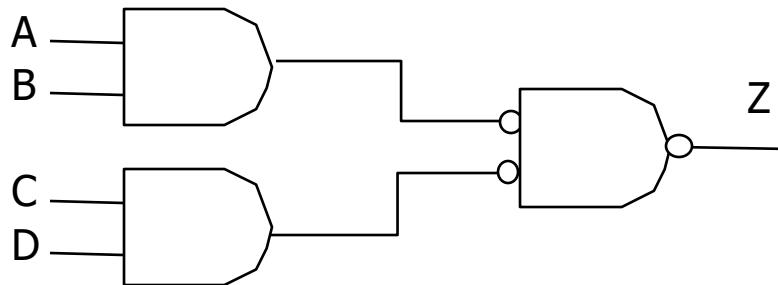


Multi-Level Networks

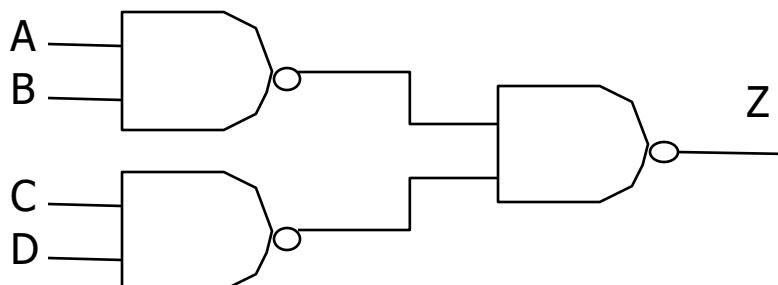
- Application: Conversion AND/OR network to NAND/NAND network



$$AB+CD$$



$$(AB+CD)''$$
$$((AB)'' \bullet (CD)'')'$$



In a similar way an OR/AND network can be converted to a NOR/NOR network

Multi-Level Networks

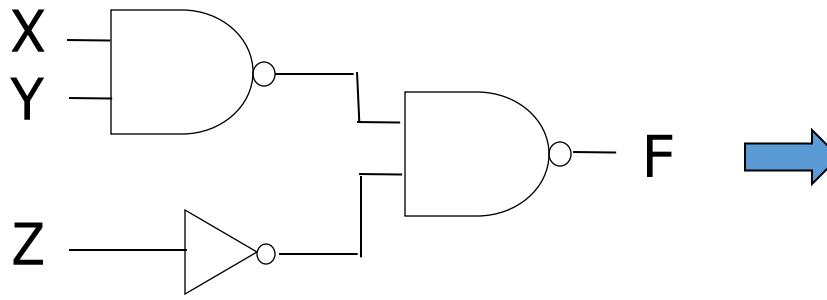
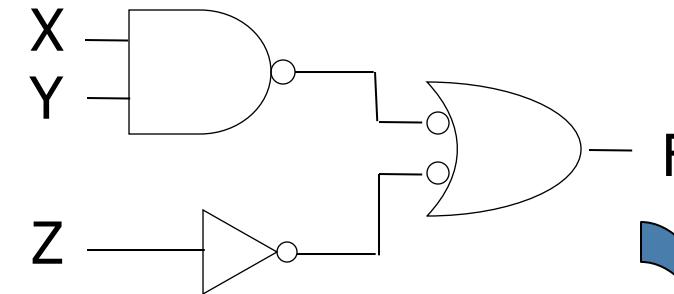
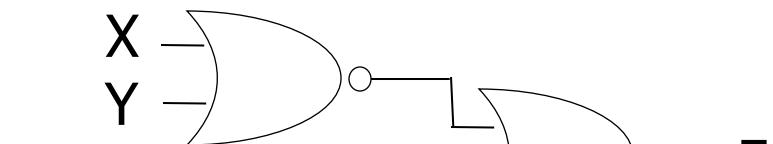
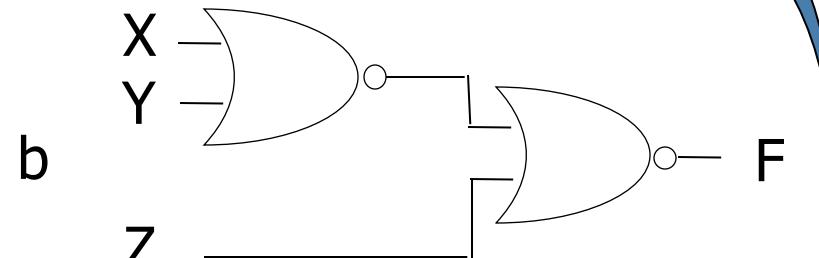
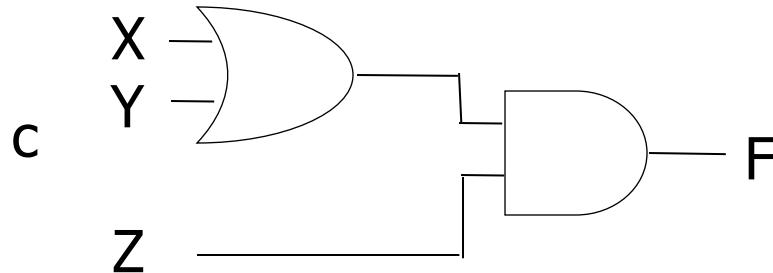
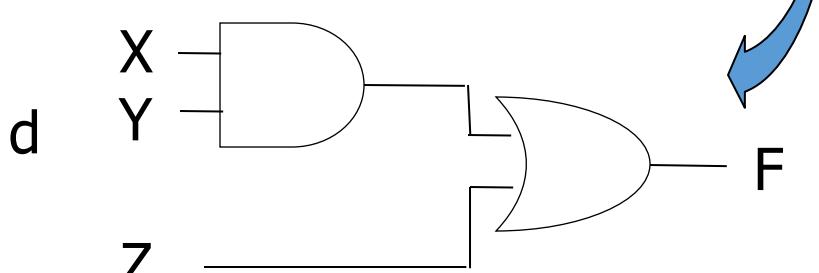
- Recipe implementation in NAND/NAND (NOR/NOR) circuit

- Create K-map
- Derive minimal sum of products (product of sums)
- Possibly apply factorisations
- Convert to NAND/NAND (NOR/NOR)

(see previous slides)

Multi-Level Networks – Question 2

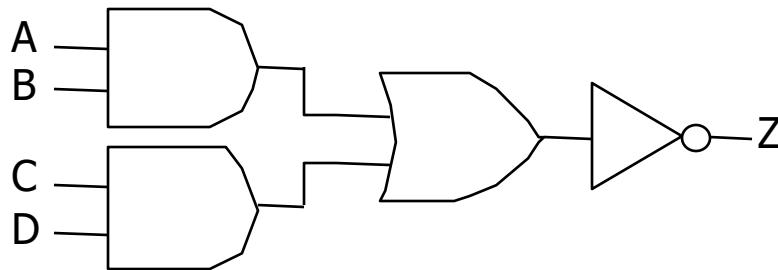
What is an alternative for the circuit below?



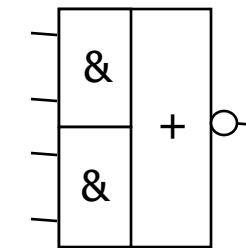
Multi-Level Networks – AND-OR-Invert & OR-AND-Invert gates

Besides NAND and NOR gates, also AOI and OAI gates are preferred over AND or OR gates.

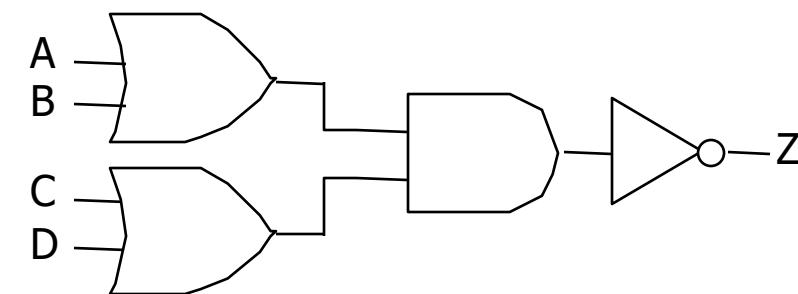
AOI



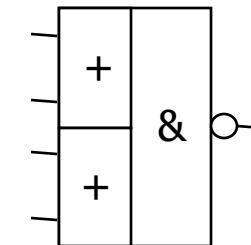
2x2 AOI Schematic Symbol



OAI



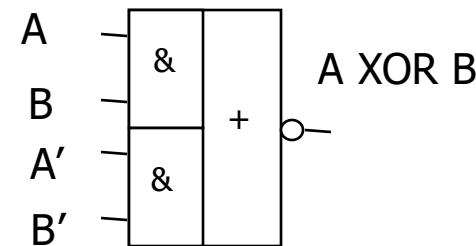
2x2 OAI Schematic Symbol



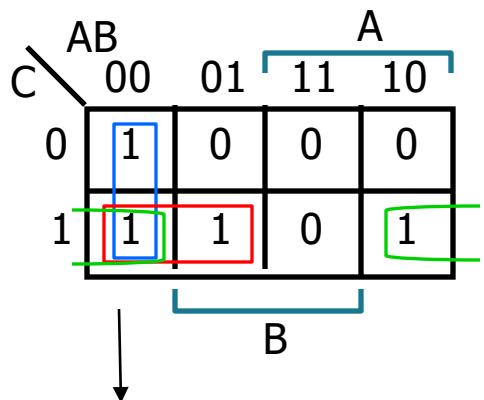
Multi-Level Networks – Implementation Examples

$$F = A \text{ XOR } B$$

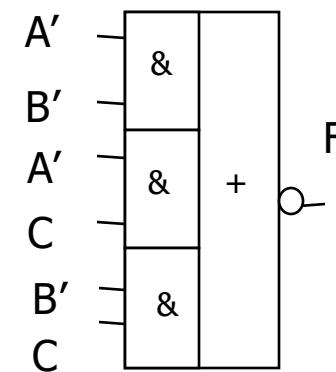
$$\begin{aligned}F' &= (A \text{ XOR } B)' = (A' B + A B')' \\&= (A + B') (A' + B) = A B + A' B'\end{aligned}$$



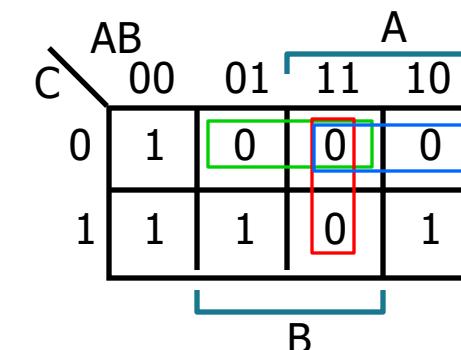
$$F = \sum m(2,4,6,7) \Rightarrow F' = \sum m(0,1,3,5)$$



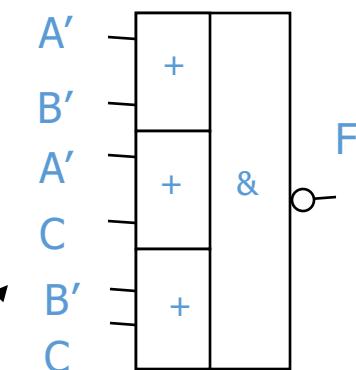
$$F' = A' B' + A' C + B' C$$



$$F = \prod M(0,1,3,5) \Rightarrow F' = \prod M(2,4,6,7)$$



$$F' = (A' + B') (A' + C) (B' + C)$$

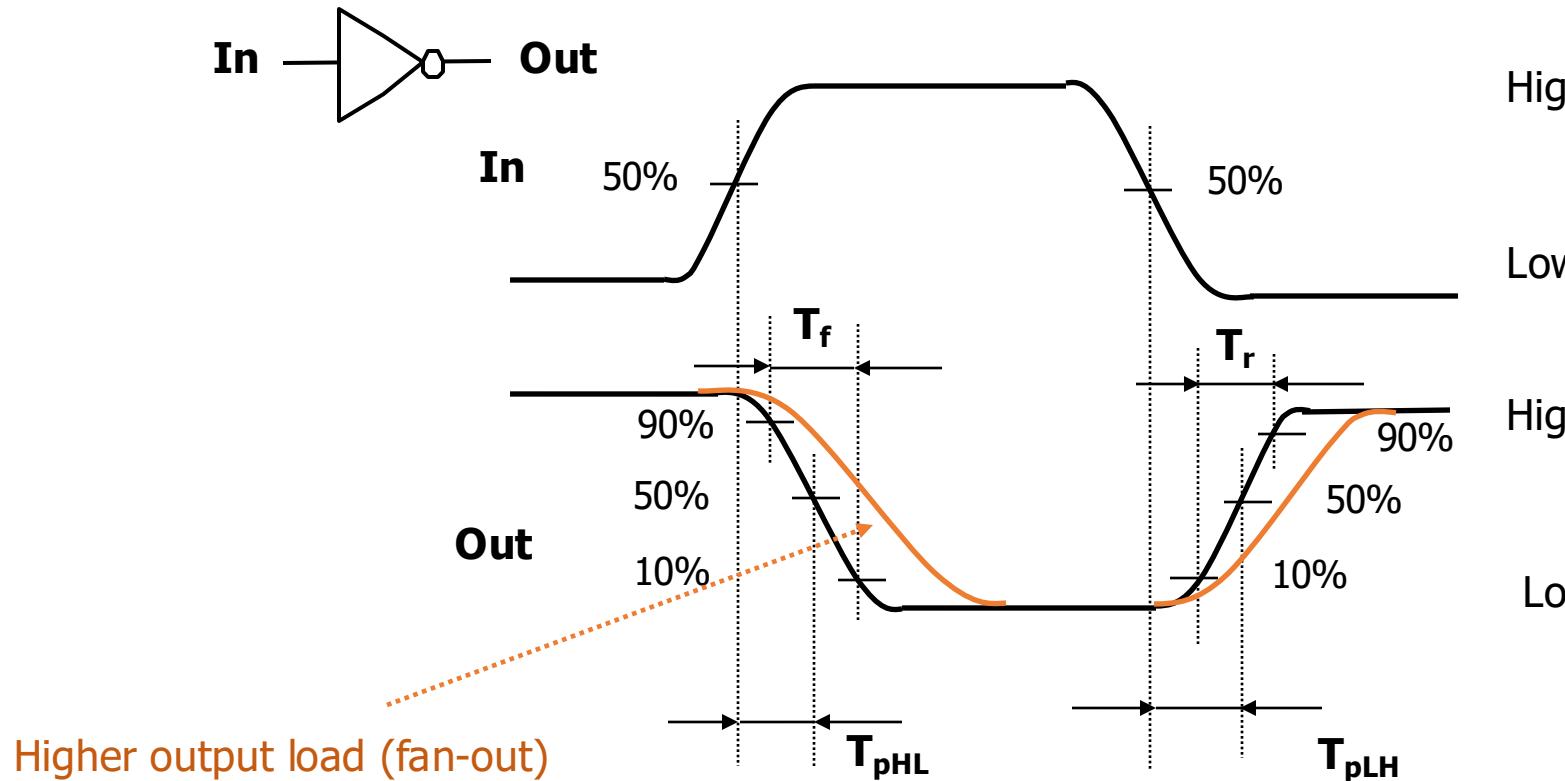


EE1D1: Digital Systems A

Timing in Combinatorial Circuits

Timing in Combinatorial Circuits

- Time response of gates



T_f : fall time H-L transition

T_{pHL} : propagation time H-L transition

T_r : rise time L-H transition

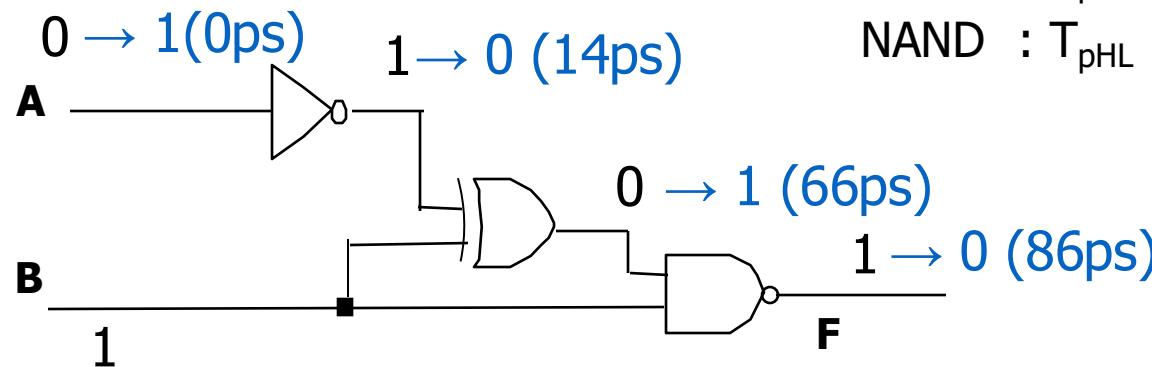
T_{pLH} : propagation time L-H transition

Often nominal, minimum and maximum values per gate type

Propagation time e.g. $T_{pHL} = 2.0 + 1.2 \times L \text{ ps}$, with L load

Timing in combinatorial circuits

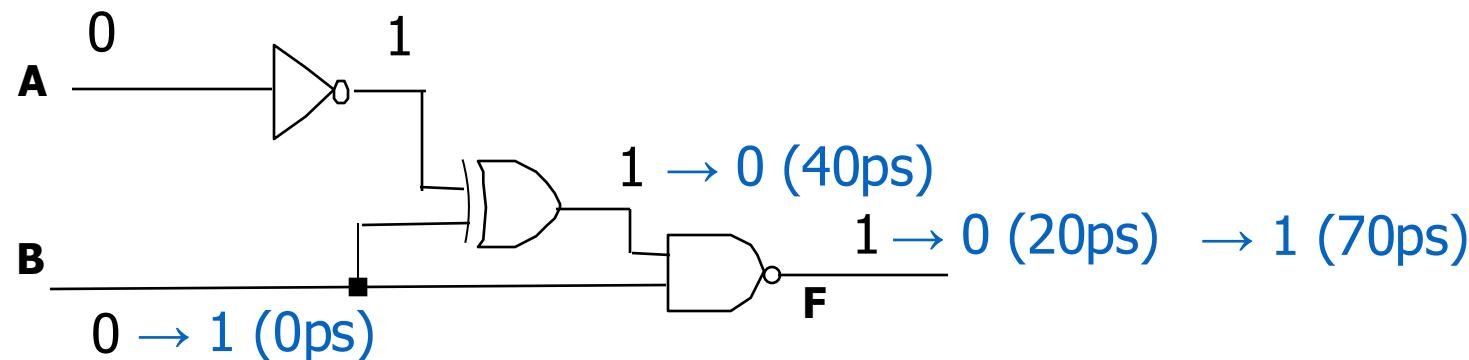
- Time response of combinatorial circuits



Timing parameters for basic gates:

INV	: $T_{pHL} : 14\text{ps}$	$T_{pLH} : 18\text{ps}$
EXOR	: $T_{pHL} : 40\text{ps}$	$T_{pLH} : 52\text{ps}$
NAND	: $T_{pHL} : 20\text{ps}$	$T_{pLH} : 30\text{ps}$

Propagation times add to each other

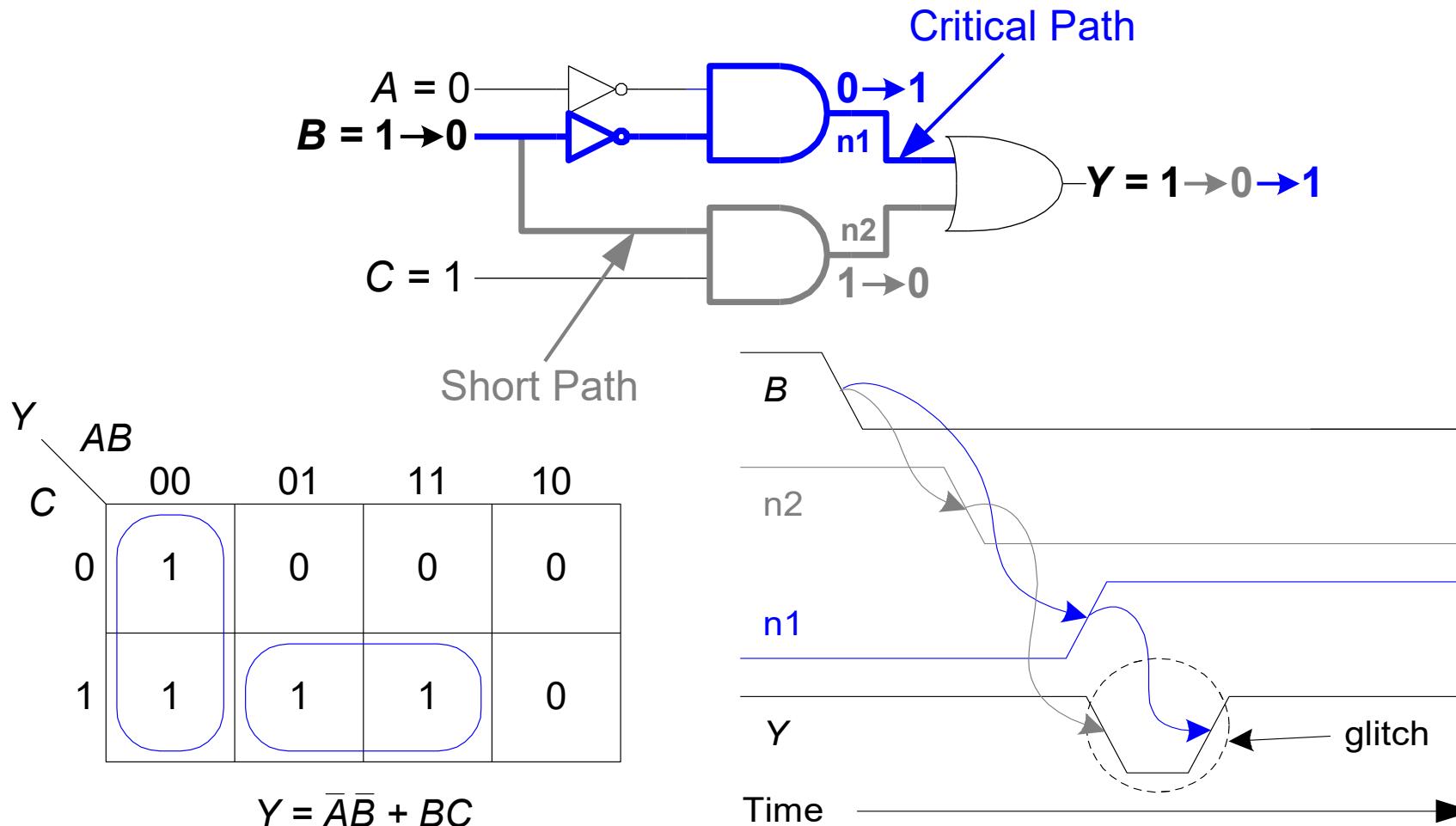


spike/glitch (1-0-1) at the output!

Timing in combinatorial circuits

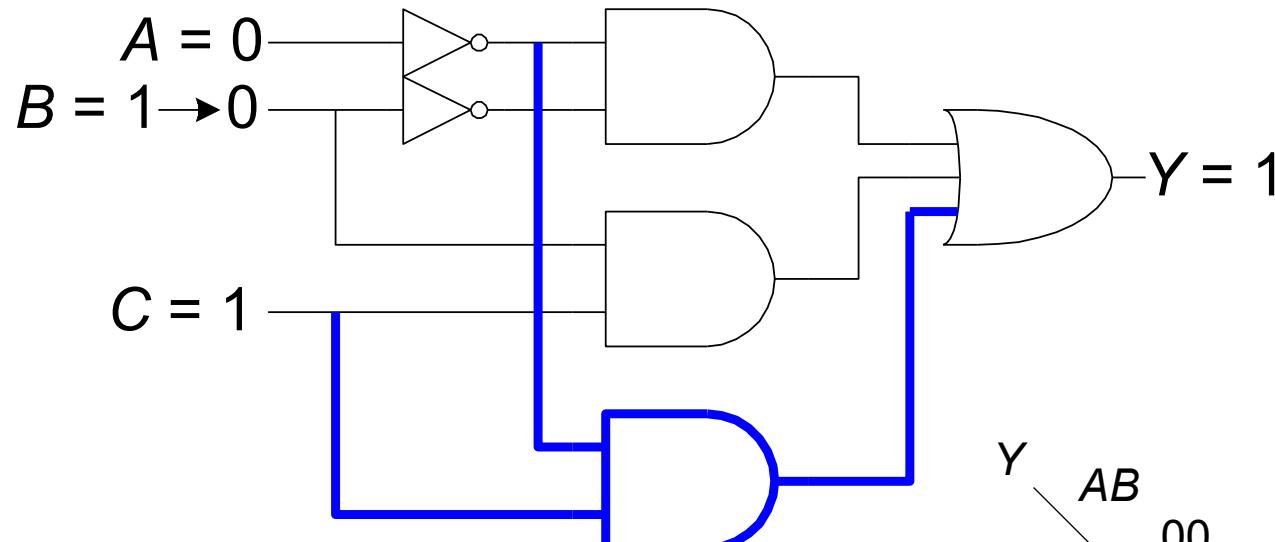
- How to fix Glitches?

Glitches usually cause no problems, but we will show how to fix them

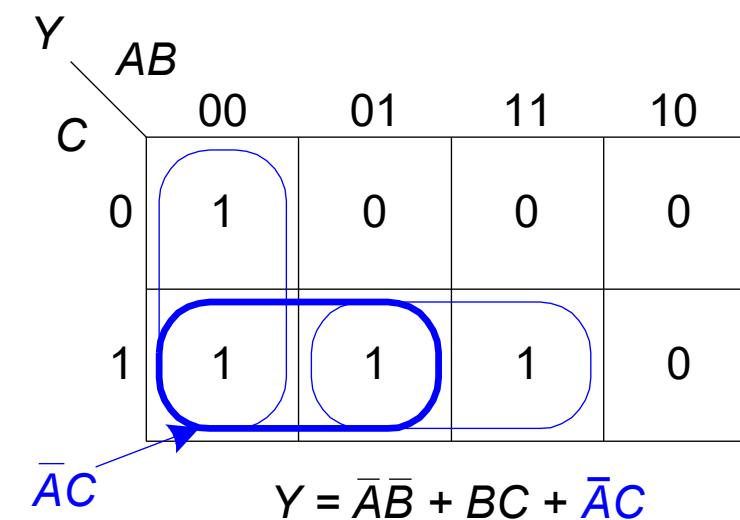


Timing in combinatorial circuits

- Fixing the Glitch

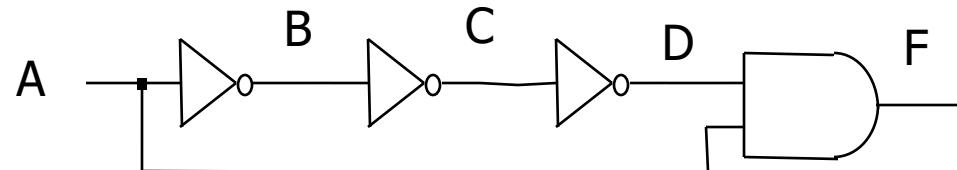


Because of the redundant term $A' C$, the change on B has no effect when A=0 and C=1

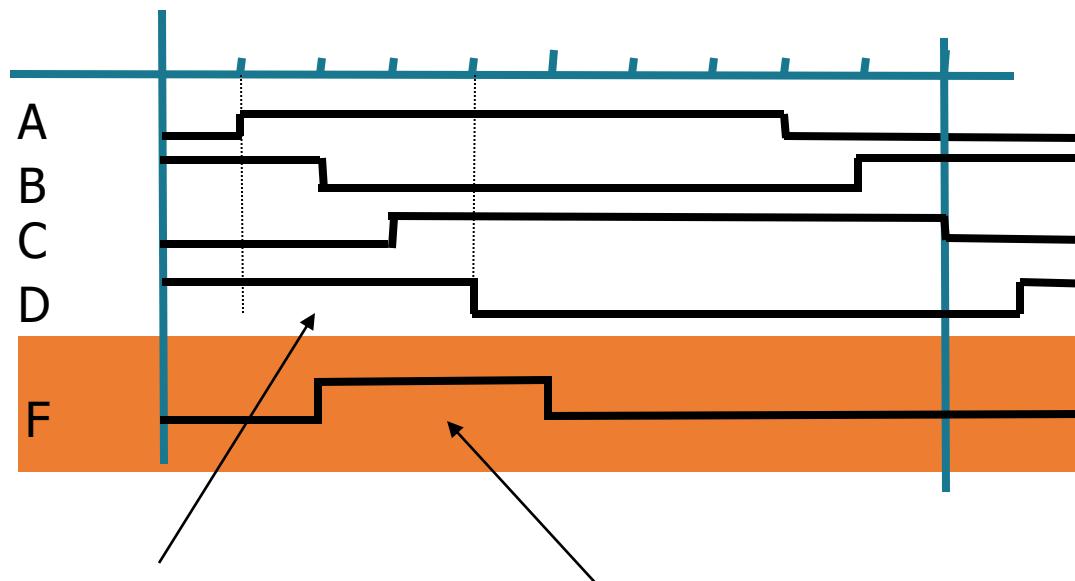


Timing in Combinatorial Circuits

- Application of spikes: pulse generator



$$\text{static theory: } F = A' \bullet A = 0$$



D stays 1 during 3 gate delays
after A changes from 0 to 1

Hence F is not always 0 ==> pulse

Summary

- Canonical expressions two-level networks
 - Sum of Products
 - Product of Sums
- Two-level simplification
- Multi-level networks
 - Factorization
 - Mapping to NAND-NAND and NOR-NOR networks
 - Mapping to AND-OR-INV and OR-AND-INV gates
- Timing in combinatorial networks
 - Time response of gates
 - Time response of combinatorial circuits
 - Fixing the Glitch

To do list

- Reading Material book “Digital Design”:
 - Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9
- Assignments for this lecture:
 - Gated Practise Lecture 3

Thank you