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Recap

• System Descriptions

• Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL 

• System Types

• Combinational circuits

• Sequential circuits

• Boolean Algebra

• Logic/Boolean operations

• Boolean simplification/minimization

• Prove system equivalence
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Recap

Week Lecture 1 (Mo) Lecture 2 (Tue) Assignments Mock-Up/Exam

1.1 Intro Digital Systems Boolean Circuits GP-lec1, GP-lec2

1.2 SystemVerilog Logic Minimization GP-lec3, GP-lec4

1.3
Combinational Modules,
Implementation Technology
and Floating Point Numbers

GP-lec5

Course Lab Part 1

1.4 Course Lab Part 2
Mock Exam (Tuesday)

Discuss Mock Exam (Friday)

1.5 Partial Exam 1 (Friday)



Outline

Canonical Expressions Two-Level Networks

• Sum of Products

• Product of Sums

Two-Level Simplification

• Karnaug-maps

Multi-Level networks

• Factorization

• Mapping to NAND-NAND and NOR-NOR networks

• Mapping to AND-OR-inv and OR-AND-inv gates

Timing in Combinatorial Networks

Sections in book: 2.2, 2.3.5, 2.5, 2.7 and 2.9
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Learning Objectives

As student you should be able to:

• To use canonical expression (i.e., sum-of products and products-of-sum) to represent logic functions.

• Minimize logic expressions using Karnaugh maps

• Take advantage of don’t care inputs to minimize logic expressions

• Convert two-level and multi-level circuits to NAND or NOR equivalents

• Map expressions to And-Or-Invert circuits and Or-And-Invert

• Analyze the timing behaviour of circuits 

6



EE1D1: Digital Systems A

Canonical Expressions
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Canonical Expressions

• Expressions vs Truth Table
• Expression   unique truth table

• Truth table   many alternative expressions

• Canonical Form
• Unique standard form for expressions

• Truth table   unique canonical expression

• We look at two canonical forms:
• Sum-of-Products

• Product-of-Sums 

F' = A' B' C'  +  A' B' C  +  A' B C' 

0 0 0         0 0 1        0 1 0

F =  A' B C   +   A B' C’   +   A B' C   +   A B C’   +   A B C

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

Sum-of-Products form:

F’

1
1
1
0
0
0
0
0

A product term that contains each input 
signal exactly once is called a minterm

F =  (               ) •  (               )  •  (               )

0  0  0 0  0  1 0  1  0

Products-of-Sum form:

A sum term that contains each input signal 
exactly once is called a maxterm

(A' B' C')' (A' B' C)’   (A' B C')' 

F =  (A + B + C ) •  (A + B + C’)  •  (A + B' + C) 

A   B  C         F    

0   0   0 0
0   0   1 0
0   1   0 0
0   1   1         1
1   0   0         1
1   0   1         1
1   1   0         1
1   1   1         1
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Canonical expressions – Sum of Products

Canonical form

F(A,B,C) = A' B C + A B' C’ + A B' C + A B C' + A B C

= m3 + m4 + m5 + m6 + m7

=  m(3,4,5,6,7)

A   B  C        Minterms F

0   0   0 A’B’C’ = m0 0
0   0   1 A’B’C  = m1 0
0   1   0         A’BC’  = m2 0
0   1   1         A’BC   = m3 1
1   0   0         AB’C’  = m4 1
1   0   1         AB’C   = m5 1
1   1   0         ABC’   = m6 1
1   1   1         ABC    = m7 1

F = A B' (C + C')  +  A' B C  +  A B (C' + C)
= A B'  +  A' B C  +  A B
= A (B' + B)  +  A' B C
= A  +  A' B C
= A  +  B C

Canonical form to minimal form sum of products

B

C

A

F

F’(A,B,C) = A' B’ C’ + A’ B' C + A’ B C’

= m0 + m1 + m2

=  m(0,1,2)

Circuit

Truth Table
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Canonical Expressions – Product of Sums

F(A,B,C) = (A + B + C) (A + B + C') (A + B' + C)

=  M(0,1,2) = M0 M1 M2 

F’(A,B,C) = (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')

=  M(3,4,5,6,7) = M3 M4 M5 M6 M7

Truth Table Canonical form

A   B  C        Maxterms              F    F’

0   0   0         A+B+C      = M0 0 1
0   0   1 A+B+C’     = M1 0 1
0   1   0         A+B’+C     = M2 0 1
0   1   1         A+B’+C’    = M3 1    0
1   0   0         A’+B+C     = M4 1    0
1   0   1         A’+B+C’    = M5 1    0
1   1   0         A’+B’+C    = M6 1    0
1   1   1         A’+B’+C’   = M7 1    0

F = (A + B + C) (A + B + C') (A + B' + C)
= (A + B + C) (A + B + C') (A + B' + C) (A + B + C) 
= (A + B) (A + C)

Canonical form to minimal form Product of Sums

Note: Y = (A + B)
(Y+C)(Y+C’) = YY + YC’ + CY + CC’

= Y   + YC’ + YC = Y 

A
B

A
C

F

Circuit
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Canonical Expressions

• Two-level Canonical Forms

• (Sum of Products)’   Product of Sums:

F = m3 + m4 + m5 + m6 + m7

= A' B C  +  A B' C'  +  A B' C  +  A B C'  +  A B C 

F’ = (A' B C  +  A B' C'  +  A B' C  +  A B C'  +  A B C)’

= (A' B C)’ (A B' C’)’ (A B' C)’ (A B C’) (A B C)’ 
= (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')

= M3 M4 M5 M6 M7

F = M0 M1 M2 

= (A + B + C) (A + B + C') (A + B' + C) 

F’ = {(A + B + C) (A + B + C') (A + B' + C)}’

= (A + B + C)’ +  (A + B + C')’ + (A + B' + C)’ 
= A' B' C'  +  A' B' C  +  A' B C’ 

= m0 + m1 + m2

• (Product of Sums)’   Sum of Products:

A   B  C         F    

0   0   0         0
0   0   1 0
0   1   0         0
0   1   1         1
1   0   0         1
1   0   1         1
1   1   0         1
1   1   1         1

F’

1
1
1
0
0
0
0
0
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Canonical Expressions
• Alternative implementations of F

Canonical Sum of Products

Minimal Sum of Products

Canonical Product of Sums

Minimal Product of Sums

A 

B 

F 2 

F 3 

F 4 

F 1 
C 
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Canonical Expressions

• Comparison timing behaviour

Apart from timing glitches the behaviour is the same for different implementations

100 200 

A 

B 

C 

F 1 

F 2 

F 3 

F 4
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Canonical Expressions

• Incompletely specified functions

n-input function  2n possible input combinations

not all possibilities are always relevant

Example: Binary-Coded-Decimal-Digit-Increment-by-1

Z = m0 + m2 + ... + m8 + d10 + d11+ ... + d15 = M1 M3 ... M9 D10 D11 ... D15

input combinations for Z = 0:
Off-set for Z

input combinations for Z = X:
Don't care (DC) set for Z

input combinations for Z = 1:
On-set for Z

X = don’t care (value is not relevant)

A 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

B 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

C 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

D 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

W 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

X 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

Y 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

Z 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

Digit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Digit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

inputs outputs 

A 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

B 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

C 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

D 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

W 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

X 

X 

X 

X 

X 

X 

X 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

X 

X 

X 

X 

X 

X 

Y 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

X 

X 

X 

X 

X 

X 

Z 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

X 

X 

X 

X 

X 

X 

Digit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Digit 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

inputs outputs 
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EE1D1: Digital Systems A

Two-Level Simplification
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Two-Level Simplification

• Algebraic simplification
• No fixed procedure

• How do you know a minimal form has been reached?

• Simplification of two-level networks using Karnaugh-maps (see next slides):
• Systematic method

• Always minimal form

• Limited to max. 4 or 5 inputs

• Computer-Aided Design (CAD) Tools
• Optimal simplifications require a lot of computation power, especially for functions with many inputs (>10)

• Therefore sub-optimal solutions are calculated
• less computation time needed

• solutions are not optimal but (usually) acceptable

• Manual Simplification Still Useful Though
• For small circuits: manual simplification gives more insight
• Insight in CAD tools (espresso, Quartus, ISE)
• Possibility to check CAD results (for small circuits)
• No CAD tools available during the exam ...
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Two-Level Simplification – Simplification Principle

A

0 
0 
1 
1 

B 

0 
1 
0 
1 

F 

0 
0 
1 
1 

F = A B'  +  A B  =  A (B' + B)  =  A

A values are not different within on-set rows

B values are different within on-set rows

B is eliminated, A remains

A

0 
0 
1 
1 

B

0 
1 
0 
1 

G 

1 
0 
1 
0 G = A' B'  +  A B'  =  (A' + A) B'  =  B'

B values are not different within on-set rows

A values are different within on-set rows

A is eliminated, B remains

The essence of simplification!

• Find two input combinations of the ON-set where only one variable has a different value.

• This variable apparently doesn’t make a difference and can be eliminated.
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Two-level simplification – Karnaugh Maps (K-maps)

• K-Maps

• Alternative method to represent truth tables, such that between 2 “neighbours” exactly one input variable 
changes its value.

• If neighbours have the same output value: the input variable that changes can be eliminated 

A 

B 0 1 

0 

1 

0 

1 

2 

3 

2-variable
K-map

B 

0 

1 

2 

3 

6 

7 

4 

5 

AB 

C 

A 

00 01 11 10 

0 

1 

3-variable
K-map

• exactly one variable changes between neighbours 

• first-last column are also neighbour

• top-bottom row are also neighbour

Neighbours in K-maps:

000

001

010

011 

110

111

100 

101 

00 01 11 10 

0 

1 

AB 

C 

A 

B 

0

0 1

1

number in cell denotes index minterm, e.g m3

A 

0
0
1
1

B 

0
1
0
1

F 

0
0
1
1

m 

0
1
2
3

A B 

0
0
1
1

0
1
0
1

m 

0
1
2
3

C F 

0
0

1
1

0
0
1
1

0
1
0
1

1
1

0
0

4
5
6
7
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Two-Level Simplification – Karnaugh Maps (K-maps)

• Examples

• Definitions/Observations

• Product term (implicant)  Rectangle with 1’s 

• Rectangle with 1’s larger   Corresponding product term smaller !

• Only rectangles corresponding to products terms (with 1, 2, 4, 8 … (2n) 1’s) can be used

Cout = A’ B Cin +  A B’ Cin +  A B Cin’ + A B Cin

A B 
A 

B 

Cin 
00 01 11 10 

0 

1 

0 

0 

0 

1 

1 

1 

0 

1 

F(A,B,C) = A

AB 

C 

A 

00 01 11 10 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

B 

A 

B 0 1 

0 1 

0 1 

0 

1 

F = A B’ + A B

F = A

G = A’ B’ + A B’

A 

B 0 1 

1 1 

0 0 

0 

1 
G = B'

Cout = A B  +  B Cin +  A Cin

19



• Example derivation minimal sum for 4 variables

• Minimal sum of products:
• Find the lowest number of rectangles as large as possible, that covers the ON-set

• Because: less rectangles = less product terms

• larger rectangle = less variables in product term 

F(A,B,C,D) =  m(0,2,3,5,6,7,8,10,11,14,15)

F =

D 

AB 
00 01 11 10 

1 0 0 1 

0 1 0 0 

1 1 1 1 

1 1 1 1 

00 

01 

11 

10 
C 

CD 

A 

B 

+ B' D'+ A' B DC

20

Two-Level Simplification – Karnaugh Maps (K-maps)



Two-Level Simplification – Recipe Minimal Sum of Products

• Recipe:

1. Find all maximally large rectangles covering 1’s: prime implicants.

2. Find all prime implicants that are the only ones that cover a certain 1: essential prime implicants.
The essential prime implicants are for sure a product term part of the minimal expression.

3. Cover the remaining 1’s using as less as possible non-essential prime implicants. These prime implicants 
represent the other product terms part of the minimal expression.

F =D 

AB 
00 01 11 10 

0 1 1 0

1 1 1 0 

1 0 1 1 

0 0 1 1 

00 

01 

11 

10 
C 

CD 

A 

B 

BC’ + AC + A’B’D
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Two-Level Simplification – Question 1

What is a minimal sum of products for the K-map below?

24

D 

AB 
00 01 11 10 

0 0 1 0

1 1 0 0 

1 1 1 1 

0 0 1 1 

00 

01 

11 

10 
C 

CD 

A 

B 

a. A’ D  + A C + C D + A B D’

b. A C + C D + A B C’ D’ 

c. A C + A’ D + A B C’ D’ 

d. There is no correct answer listed 

above.

A C + A’ D + A B D’ 

Hence answer d



Two-Level Simplification

• Dual method: minimal product of sums vs sum of products

F =

AB 
00 01 11 10 

1 0 0 1 

0 1 0 0 

1 1 1 1 

1 1 1 1 

00 

01 

11 

10 
C 

CD 

A 

B 

D 

F’ =

(F’)’ = (B C’ D’ + A C’ D + B’ C’ D)’

F = (B’ + C + D) (A’ + C + D’) (B + C + D’)

This method can be explained as follows:

(B’ + C + D) (A’ + C + D’) (B + C + D’)

AB 
00 01 11 10 

0 1 1 0 

1 0 1 1 

0 0 0 0 

0 0 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

+ B’ C’ D+ A C’ DB C’ D’
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B=1, C=0, D=0 

A=1, C=0, D=1 

B=0, C=0, D=1 



AB 
00 01 11 10 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

Two-Level Simplification

• Don’t Cares
• Don’t cares should be used as 1 or 0 to obtain better results

F(A,B,C,D) =  m(1,3,5,7,9) +  d(6,12,13)

AB 
00 01 11 10 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

00 

01 

11 

10 
C 

CD 

A 

D 

B 

Via dual method:

F = D (A' + C’)

Hence even less terms

via K-map:

F = A' D +  C’ D using don't cares

F = A’ D +  B' C' D without don't cares
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Two-Level Simplification – Summary Two-Level Networks

• Primitives:

• INVERTER, AND, OR

• Canonical forms:

• Sum of Products (minterms), Product of Sums (maxterms) , incl. don’t cares

• Logical simplification:

• 2-level realisation with minimum number of gates and/or gate inputs

• K-map method (incl. dual method)
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EE1D1: Digital Systems A

Multi-Level Networks
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Multi-Level Networks – Advantages

Consider following sum of products form (already 2-level reduced!):

X = A D F  +  A E F  +  B D F  +  B E F  +  C D F  +  C E F  +  G

• 6 x 3-input AND gates + 1 x 7-input OR gate (often not available)
• 25 connections (19 literals plus 6 internal connections)

1 

2 

3 

4 

5 

6 

7 

A 

A 

B 

B 

C 

C 

D 

D 

D 

E 

E 

E 

F 

F 

F 

F 

F 

F 

G 

x

1 

2 3 
4 

A 

B 

C 

D 

E 

F 

G 

x

Conversion to factorised form gives more
levels, but also a smaller circuit:
X = (A + B + C) (D + E) F  +  G

• 1 x 3-input OR, 2 x 2-input OR, 1 x 3-input AND

• 10 connections (7 literals plus 3 intern)

So factorization may provide better result.
However, no systematic way to do it
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Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

• Conversion

• Initial network often expressed in ANDs and ORs (canonical form)

• Preferred gates for implementation are however NANDs en NORs (better technological properties)

• Hence we will rewrite AND/OR expressions to expressions that can be used for implementation with 
NANDs and/or NORs 
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Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

De Morgan’s law: (A + B)' =  A' • B’  A + B =  (A' • B')'

(A • B)'  =  A' + B’  A • B  =  (A'  +  B')'

A 
B 

A 
B 

A 
B 

A 
B 

A 
B 

A 
B 

A 
B 

A 
B 

Hence:

• NOR is equivalent to an AND with inverted inputs

• OR is equivalent to a NAND with inverted inputs

• NAND is equivalent to an OR with inverted inputs

• AND is equivalent to a NOR with inverted inputs
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Multi-Level Networks

• Application: Conversion AND/OR network to NAND/NAND network

A 

B 

C 

D 

Z

A 

B 

C 

D 

Z

In a similar way an 
OR/AND network 
can be converted 
to a NOR/NOR 
network

A 

B 

C 

D 

Z
NAND

AB+CD

(AB+CD)’’
((AB)’ • (CD)’)’ 
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Multi-Level Networks

• Recipe implementation in NAND/NAND (NOR/NOR) circuit

• Create K-map

• Derive minimal sum of products (product of sums)

• Possibly apply factorisations

• Convert to NAND/NAND (NOR/NOR)

(see previous slides)
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Multi-Level Networks – Question 2

What is an alternative for the circuit below?

X
Y

Z

F

F

X
Y

Z

a

F

X
Y

Z

c
F

X
Y

Z

d

b F

X
Y

Z

X
Y

Z

F
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Multi-Level Networks – AND-OR-Invert & OR-AND-Invert gates

Besides NAND and NOR gates, also AOI and OAI gates are preferred

over AND or OR gates.

&

&

+
2x2 AOI Schematic

Symbol

A 
B 

C 

D 

Z 

AOI

+

+

&
2x2 OAI Schematic

Symbol

A 
B 

C 

D 

Z 

OAI
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Multi-Level Networks – Implementation Examples

F’ = (A XOR B)’  = (A' B + A B')’ 

= (A + B') (A' + B) = A B  +  A' B'

&

&

+

A

B

A’

B’

A XOR B

F = A XOR B

F =  m(2,4,6,7)  F’ =  m(0,1,3,5)

&

& +

F

&

A’

B’

A’

C

B’

C

+

+ &

F

+

A’

B’

A’

C

B’

C

F' = (A’ + B’) (A’ + C) (B' + C)

10 

1 

1 

0 0 0 

0 1 1 

B 

11 01 00 
AB A 

C 

0 

1 

F' = A' B' + A' C + B' C

F =  M(0,1,3,5)  F’ =  M(2,4,6,7)

10 

1 

1 

0 0 0 

0 1 1 

B 

11 01 00 
AB A 

C 

0 

1 
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EE1D1: Digital Systems A

Timing in Combinatorial Circuits
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Timing in Combinatorial Circuits 

• Time response of gates

In Out

In

Out

Low

Low

High

High

50%

TpHL TpLH

Tr
Tf

50% 50%

50%

10%

90%90%

10%

Higher output load (fan-out)

Tr : rise time L-H transition

TpLH : propagation time L-H transition
Tf : fall time H-L transition

TpHL : propagation time H-L transition

Often nominal, minimum and maximum values per gate type

Propagation time e.g. TpHL = 2.0 + 1.2 x L ps, with L load
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Timing in combinatorial circuits

• Time response of combinatorial circuits

INV     : TpHL : 14ps  TpLH : 18ps

EXOR : TpHL : 40ps  TpLH : 52ps

NAND : TpHL : 20ps  TpLH : 30ps→ 1(0ps) → 0 (14ps)

→ 1 (66ps)
→ 0 (86ps)

→ 1 (0ps)

→ 0 (40ps)

→ 0 (20ps)

spike/glitch (1-0-1) at the output!

→ 1 (70ps)

A

B
F

0 1

0

1

1

0 1

1

0

1

A

B

F

Propagation times add to each other
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Timing in combinatorial circuits

• How to fix Glitches?

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

A = 0
B = 1    0

C = 1

Y = 1    0    1

Short Path

Critical Path

B

Y

Time

1    0

0    1

glitch

n1

n2

n2

n1

A = 0
B = 1    0

C = 1

Y = 1    0    1

Short Path

Critical Path

B

Y

Time

1    0

0    1

glitch

n1

n2

n2

n1

Glitches usually cause no problems, but we will show how to fix them
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Timing in combinatorial circuits

• Fixing the Glitch

B = 1    0
Y = 1

A = 0

C = 1

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + ACAC

Because of the redundant term A’ C, the 
change on B has no effect when A=0 and C=1
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Timing in Combinatorial Circuits

• Application of spikes: pulse generator

static theory: F = A' • A = 0

F
A

B C D

Hence F is not always 0 ==> pulse
D stays 1 during 3 gate delays 
after A changes from 0 to 1

A

B 
C

D

F
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Summary

• Canonical expressions two-level networks

• Sum of Products

• Product of Sums

• Two-level simplification

• Multi-level networks

• Factorization

• Mapping to NAND-NAND and NOR-NOR networks

• Mapping to AND-OR-INV and OR-AND-INV gates

• Timing in combinatorial networks

• Time response of gates

• Time response of combinatorial circuits

• Fixing the Glitch
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To do list

• Reading Material book “Digital Design”:

• Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

• Assignments for this lecture:

• Gated Practise Lecture 3
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Thank you
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