
EE1D1: Digital Systems A
BSc. EE, year 1, 2024-2025, lecture 3

Logic Minimization

Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science

EE1D1: Digital Systems A
BSc. EE, year 1, 2025-2026, lecture 4

Recap

• System Descriptions

• Switches, truth table, Boolean algebra, logic gates, timing diagram, HDL

• System Types

• Combinational circuits

• Sequential circuits

• Boolean Algebra

• Logic/Boolean operations

• Boolean simplification/minimization

• Prove system equivalence

2

Recap

3

Digital Systems

Boolean Circuits

Logic Minimization

Introduction

Lecture 2

Lecture 3

SystemVerilog

Lecture 4

Combinational Modules,
Implementation Technology
and Floating Point Numbers

Lecture 5

Sequential Logic

Lectures 6-9

Recap

Week Lecture 1 (Mo) Lecture 2 (Tue) Assignments Mock-Up/Exam

1.1 Intro Digital Systems Boolean Circuits GP-lec1, GP-lec2

1.2 SystemVerilog Logic Minimization GP-lec3, GP-lec4

1.3
Combinational Modules,
Implementation Technology
and Floating Point Numbers

GP-lec5

Course Lab Part 1

1.4 Course Lab Part 2
Mock Exam (Tuesday)

Discuss Mock Exam (Friday)

1.5 Partial Exam 1 (Friday)

Outline

Canonical Expressions Two-Level Networks

• Sum of Products

• Product of Sums

Two-Level Simplification

• Karnaug-maps

Multi-Level networks

• Factorization

• Mapping to NAND-NAND and NOR-NOR networks

• Mapping to AND-OR-inv and OR-AND-inv gates

Timing in Combinatorial Networks

Sections in book: 2.2, 2.3.5, 2.5, 2.7 and 2.9

5

Learning Objectives

As student you should be able to:

• To use canonical expression (i.e., sum-of products and products-of-sum) to represent logic functions.

• Minimize logic expressions using Karnaugh maps

• Take advantage of don’t care inputs to minimize logic expressions

• Convert two-level and multi-level circuits to NAND or NOR equivalents

• Map expressions to And-Or-Invert circuits and Or-And-Invert

• Analyze the timing behaviour of circuits

6

EE1D1: Digital Systems A

Canonical Expressions

7

Canonical Expressions

• Expressions vs Truth Table
• Expression  unique truth table

• Truth table  many alternative expressions

• Canonical Form
• Unique standard form for expressions

• Truth table  unique canonical expression

• We look at two canonical forms:
• Sum-of-Products

• Product-of-Sums

F' = A' B' C' + A' B' C + A' B C'

0 0 0 0 0 1 0 1 0

F = A' B C + A B' C’ + A B' C + A B C’ + A B C

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

Sum-of-Products form:

F’

1
1
1
0
0
0
0
0

A product term that contains each input
signal exactly once is called a minterm

F = () • () • ()

0 0 0 0 0 1 0 1 0

Products-of-Sum form:

A sum term that contains each input signal
exactly once is called a maxterm

(A' B' C')' (A' B' C)’ (A' B C')'

F = (A + B + C) • (A + B + C’) • (A + B' + C)

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

8

Canonical expressions – Sum of Products

Canonical form

F(A,B,C) = A' B C + A B' C’ + A B' C + A B C' + A B C

= m3 + m4 + m5 + m6 + m7

=  m(3,4,5,6,7)

A B C Minterms F

0 0 0 A’B’C’ = m0 0
0 0 1 A’B’C = m1 0
0 1 0 A’BC’ = m2 0
0 1 1 A’BC = m3 1
1 0 0 AB’C’ = m4 1
1 0 1 AB’C = m5 1
1 1 0 ABC’ = m6 1
1 1 1 ABC = m7 1

F = A B' (C + C') + A' B C + A B (C' + C)
= A B' + A' B C + A B
= A (B' + B) + A' B C
= A + A' B C
= A + B C

Canonical form to minimal form sum of products

B

C

A

F

F’(A,B,C) = A' B’ C’ + A’ B' C + A’ B C’

= m0 + m1 + m2

=  m(0,1,2)

Circuit

Truth Table

9

Canonical Expressions – Product of Sums

F(A,B,C) = (A + B + C) (A + B + C') (A + B' + C)

=  M(0,1,2) = M0 M1 M2

F’(A,B,C) = (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')

=  M(3,4,5,6,7) = M3 M4 M5 M6 M7

Truth Table Canonical form

A B C Maxterms F F’

0 0 0 A+B+C = M0 0 1
0 0 1 A+B+C’ = M1 0 1
0 1 0 A+B’+C = M2 0 1
0 1 1 A+B’+C’ = M3 1 0
1 0 0 A’+B+C = M4 1 0
1 0 1 A’+B+C’ = M5 1 0
1 1 0 A’+B’+C = M6 1 0
1 1 1 A’+B’+C’ = M7 1 0

F = (A + B + C) (A + B + C') (A + B' + C)
= (A + B + C) (A + B + C') (A + B' + C) (A + B + C)
= (A + B) (A + C)

Canonical form to minimal form Product of Sums

Note: Y = (A + B)
(Y+C)(Y+C’) = YY + YC’ + CY + CC’

= Y + YC’ + YC = Y

A
B

A
C

F

Circuit

10

Canonical Expressions

• Two-level Canonical Forms

• (Sum of Products)’  Product of Sums:

F = m3 + m4 + m5 + m6 + m7

= A' B C + A B' C' + A B' C + A B C' + A B C

F’ = (A' B C + A B' C' + A B' C + A B C' + A B C)’

= (A' B C)’ (A B' C’)’ (A B' C)’ (A B C’) (A B C)’
= (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')

= M3 M4 M5 M6 M7

F = M0 M1 M2

= (A + B + C) (A + B + C') (A + B' + C)

F’ = {(A + B + C) (A + B + C') (A + B' + C)}’

= (A + B + C)’ + (A + B + C')’ + (A + B' + C)’
= A' B' C' + A' B' C + A' B C’

= m0 + m1 + m2

• (Product of Sums)’  Sum of Products:

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F’

1
1
1
0
0
0
0
0

11

Canonical Expressions
• Alternative implementations of F

Canonical Sum of Products

Minimal Sum of Products

Canonical Product of Sums

Minimal Product of Sums

A

B

F 2

F 3

F 4

F 1
C

12

Canonical Expressions

• Comparison timing behaviour

Apart from timing glitches the behaviour is the same for different implementations

100 200

A

B

C

F 1

F 2

F 3

F 4

13

Canonical Expressions

• Incompletely specified functions

n-input function  2n possible input combinations

not all possibilities are always relevant

Example: Binary-Coded-Decimal-Digit-Increment-by-1

Z = m0 + m2 + ... + m8 + d10 + d11+ ... + d15 = M1 M3 ... M9 D10 D11 ... D15

input combinations for Z = 0:
Off-set for Z

input combinations for Z = X:
Don't care (DC) set for Z

input combinations for Z = 1:
On-set for Z

X = don’t care (value is not relevant)

A

0

0

0

0

0

0

0

0

1

1

B

0

0

0

0

1

1

1

1

0

0

C

0

0

1

1

0

0

1

1

0

0

D

0

1

0

1

0

1

0

1

0

1

W

0

0

0

0

0

0

0

1

1

0

X

0

0

0

1

1

1

1

0

0

0

Y

0

1

1

0

0

1

1

0

0

0

Z

1

0

1

0

1

0

1

0

1

0

Digit

0

1

2

3

4

5

6

7

8

9

Digit

0

1

2

3

4

5

6

7

8

9

inputs outputs

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

W

0

0

0

0

0

0

0

1

1

0

X

X

X

X

X

X

X

0

0

0

1

1

1

1

0

0

0

X

X

X

X

X

X

Y

0

1

1

0

0

1

1

0

0

0

X

X

X

X

X

X

Z

1

0

1

0

1

0

1

0

1

0

X

X

X

X

X

X

Digit

0

1

2

3

4

5

6

7

8

9

Digit

0

1

2

3

4

5

6

7

8

9

inputs outputs

14

EE1D1: Digital Systems A

Two-Level Simplification

15

Two-Level Simplification

• Algebraic simplification
• No fixed procedure

• How do you know a minimal form has been reached?

• Simplification of two-level networks using Karnaugh-maps (see next slides):
• Systematic method

• Always minimal form

• Limited to max. 4 or 5 inputs

• Computer-Aided Design (CAD) Tools
• Optimal simplifications require a lot of computation power, especially for functions with many inputs (>10)

• Therefore sub-optimal solutions are calculated
• less computation time needed

• solutions are not optimal but (usually) acceptable

• Manual Simplification Still Useful Though
• For small circuits: manual simplification gives more insight
• Insight in CAD tools (espresso, Quartus, ISE)
• Possibility to check CAD results (for small circuits)
• No CAD tools available during the exam ...

16

Two-Level Simplification – Simplification Principle

A

0
0
1
1

B

0
1
0
1

F

0
0
1
1

F = A B' + A B = A (B' + B) = A

A values are not different within on-set rows

B values are different within on-set rows

B is eliminated, A remains

A

0
0
1
1

B

0
1
0
1

G

1
0
1
0 G = A' B' + A B' = (A' + A) B' = B'

B values are not different within on-set rows

A values are different within on-set rows

A is eliminated, B remains

The essence of simplification!

• Find two input combinations of the ON-set where only one variable has a different value.

• This variable apparently doesn’t make a difference and can be eliminated.

17

Two-level simplification – Karnaugh Maps (K-maps)

• K-Maps

• Alternative method to represent truth tables, such that between 2 “neighbours” exactly one input variable
changes its value.

• If neighbours have the same output value: the input variable that changes can be eliminated

A

B 0 1

0

1

0

1

2

3

2-variable
K-map

B

0

1

2

3

6

7

4

5

AB

C

A

00 01 11 10

0

1

3-variable
K-map

• exactly one variable changes between neighbours

• first-last column are also neighbour

• top-bottom row are also neighbour

Neighbours in K-maps:

000

001

010

011

110

111

100

101

00 01 11 10

0

1

AB

C

A

B

0

0 1

1

number in cell denotes index minterm, e.g m3

A

0
0
1
1

B

0
1
0
1

F

0
0
1
1

m

0
1
2
3

A B

0
0
1
1

0
1
0
1

m

0
1
2
3

C F

0
0

1
1

0
0
1
1

0
1
0
1

1
1

0
0

4
5
6
7

18

Two-Level Simplification – Karnaugh Maps (K-maps)

• Examples

• Definitions/Observations

• Product term (implicant)  Rectangle with 1’s

• Rectangle with 1’s larger  Corresponding product term smaller !

• Only rectangles corresponding to products terms (with 1, 2, 4, 8 … (2n) 1’s) can be used

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

A B
A

B

Cin
00 01 11 10

0

1

0

0

0

1

1

1

0

1

F(A,B,C) = A

AB

C

A

00 01 11 10

0

1

0

0

0

0

1

1

1

1

B

A

B 0 1

0 1

0 1

0

1

F = A B’ + A B

F = A

G = A’ B’ + A B’

A

B 0 1

1 1

0 0

0

1
G = B'

Cout = A B + B Cin + A Cin

19

• Example derivation minimal sum for 4 variables

• Minimal sum of products:
• Find the lowest number of rectangles as large as possible, that covers the ON-set

• Because: less rectangles = less product terms

• larger rectangle = less variables in product term

F(A,B,C,D) =  m(0,2,3,5,6,7,8,10,11,14,15)

F =

D

AB
00 01 11 10

1 0 0 1

0 1 0 0

1 1 1 1

1 1 1 1

00

01

11

10
C

CD

A

B

+ B' D'+ A' B DC

20

Two-Level Simplification – Karnaugh Maps (K-maps)

Two-Level Simplification – Recipe Minimal Sum of Products

• Recipe:

1. Find all maximally large rectangles covering 1’s: prime implicants.

2. Find all prime implicants that are the only ones that cover a certain 1: essential prime implicants.
The essential prime implicants are for sure a product term part of the minimal expression.

3. Cover the remaining 1’s using as less as possible non-essential prime implicants. These prime implicants
represent the other product terms part of the minimal expression.

F =D

AB
00 01 11 10

0 1 1 0

1 1 1 0

1 0 1 1

0 0 1 1

00

01

11

10
C

CD

A

B

BC’ + AC + A’B’D

23

Two-Level Simplification – Question 1

What is a minimal sum of products for the K-map below?

24

D

AB
00 01 11 10

0 0 1 0

1 1 0 0

1 1 1 1

0 0 1 1

00

01

11

10
C

CD

A

B

a. A’ D + A C + C D + A B D’

b. A C + C D + A B C’ D’

c. A C + A’ D + A B C’ D’

d. There is no correct answer listed

above.

A C + A’ D + A B D’

Hence answer d

Two-Level Simplification

• Dual method: minimal product of sums vs sum of products

F =

AB
00 01 11 10

1 0 0 1

0 1 0 0

1 1 1 1

1 1 1 1

00

01

11

10
C

CD

A

B

D

F’ =

(F’)’ = (B C’ D’ + A C’ D + B’ C’ D)’

F = (B’ + C + D) (A’ + C + D’) (B + C + D’)

This method can be explained as follows:

(B’ + C + D) (A’ + C + D’) (B + C + D’)

AB
00 01 11 10

0 1 1 0

1 0 1 1

0 0 0 0

0 0 0 0

00

01

11

10
C

CD

A

D

B

+ B’ C’ D+ A C’ DB C’ D’

25

B=1, C=0, D=0

A=1, C=0, D=1

B=0, C=0, D=1

AB
00 01 11 10

0 0 X 0

1 1 X 1

1 1 0 0

0 X 0 0

00

01

11

10
C

CD

A

D

B

Two-Level Simplification

• Don’t Cares
• Don’t cares should be used as 1 or 0 to obtain better results

F(A,B,C,D) =  m(1,3,5,7,9) +  d(6,12,13)

AB
00 01 11 10

0 0 X 0

1 1 X 1

1 1 0 0

0 X 0 0

00

01

11

10
C

CD

A

D

B

Via dual method:

F = D (A' + C’)

Hence even less terms

via K-map:

F = A' D + C’ D using don't cares

F = A’ D + B' C' D without don't cares

26

Two-Level Simplification – Summary Two-Level Networks

• Primitives:

• INVERTER, AND, OR

• Canonical forms:

• Sum of Products (minterms), Product of Sums (maxterms) , incl. don’t cares

• Logical simplification:

• 2-level realisation with minimum number of gates and/or gate inputs

• K-map method (incl. dual method)

27

EE1D1: Digital Systems A

Multi-Level Networks

28

Multi-Level Networks – Advantages

Consider following sum of products form (already 2-level reduced!):

X = A D F + A E F + B D F + B E F + C D F + C E F + G

• 6 x 3-input AND gates + 1 x 7-input OR gate (often not available)
• 25 connections (19 literals plus 6 internal connections)

1

2

3

4

5

6

7

A

A

B

B

C

C

D

D

D

E

E

E

F

F

F

F

F

F

G

x

1

2 3
4

A

B

C

D

E

F

G

x

Conversion to factorised form gives more
levels, but also a smaller circuit:
X = (A + B + C) (D + E) F + G

• 1 x 3-input OR, 2 x 2-input OR, 1 x 3-input AND

• 10 connections (7 literals plus 3 intern)

So factorization may provide better result.
However, no systematic way to do it

29

Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

• Conversion

• Initial network often expressed in ANDs and ORs (canonical form)

• Preferred gates for implementation are however NANDs en NORs (better technological properties)

• Hence we will rewrite AND/OR expressions to expressions that can be used for implementation with
NANDs and/or NORs

30

Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR

De Morgan’s law: (A + B)' = A' • B’  A + B = (A' • B')'

(A • B)' = A' + B’  A • B = (A' + B')'

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

Hence:

• NOR is equivalent to an AND with inverted inputs

• OR is equivalent to a NAND with inverted inputs

• NAND is equivalent to an OR with inverted inputs

• AND is equivalent to a NOR with inverted inputs

31

Multi-Level Networks

• Application: Conversion AND/OR network to NAND/NAND network

A

B

C

D

Z

A

B

C

D

Z

In a similar way an
OR/AND network
can be converted
to a NOR/NOR
network

A

B

C

D

Z
NAND

AB+CD

(AB+CD)’’
((AB)’ • (CD)’)’

32

Multi-Level Networks

• Recipe implementation in NAND/NAND (NOR/NOR) circuit

• Create K-map

• Derive minimal sum of products (product of sums)

• Possibly apply factorisations

• Convert to NAND/NAND (NOR/NOR)

(see previous slides)

34

Multi-Level Networks – Question 2

What is an alternative for the circuit below?

X
Y

Z

F

F

X
Y

Z

a

F

X
Y

Z

c
F

X
Y

Z

d

b F

X
Y

Z

X
Y

Z

F

35

Multi-Level Networks – AND-OR-Invert & OR-AND-Invert gates

Besides NAND and NOR gates, also AOI and OAI gates are preferred

over AND or OR gates.

&

&

+
2x2 AOI Schematic

Symbol

A
B

C

D

Z

AOI

+

+

&
2x2 OAI Schematic

Symbol

A
B

C

D

Z

OAI

36

Multi-Level Networks – Implementation Examples

F’ = (A XOR B)’ = (A' B + A B')’

= (A + B') (A' + B) = A B + A' B'

&

&

+

A

B

A’

B’

A XOR B

F = A XOR B

F =  m(2,4,6,7)  F’ =  m(0,1,3,5)

&

& +

F

&

A’

B’

A’

C

B’

C

+

+ &

F

+

A’

B’

A’

C

B’

C

F' = (A’ + B’) (A’ + C) (B' + C)

10

1

1

0 0 0

0 1 1

B

11 01 00
AB A

C

0

1

F' = A' B' + A' C + B' C

F =  M(0,1,3,5)  F’ =  M(2,4,6,7)

10

1

1

0 0 0

0 1 1

B

11 01 00
AB A

C

0

1

37

EE1D1: Digital Systems A

Timing in Combinatorial Circuits

38

Timing in Combinatorial Circuits

• Time response of gates

In Out

In

Out

Low

Low

High

High

50%

TpHL TpLH

Tr
Tf

50% 50%

50%

10%

90%90%

10%

Higher output load (fan-out)

Tr : rise time L-H transition

TpLH : propagation time L-H transition
Tf : fall time H-L transition

TpHL : propagation time H-L transition

Often nominal, minimum and maximum values per gate type

Propagation time e.g. TpHL = 2.0 + 1.2 x L ps, with L load

39

Timing in combinatorial circuits

• Time response of combinatorial circuits

INV : TpHL : 14ps TpLH : 18ps

EXOR : TpHL : 40ps TpLH : 52ps

NAND : TpHL : 20ps TpLH : 30ps→ 1(0ps) → 0 (14ps)

→ 1 (66ps)
→ 0 (86ps)

→ 1 (0ps)

→ 0 (40ps)

→ 0 (20ps)

spike/glitch (1-0-1) at the output!

→ 1 (70ps)

A

B
F

0 1

0

1

1

0 1

1

0

1

A

B

F

Propagation times add to each other

40

Timing in combinatorial circuits

• How to fix Glitches?

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

A = 0
B = 1 0

C = 1

Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1 0

0 1

glitch

n1

n2

n2

n1

A = 0
B = 1 0

C = 1

Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1 0

0 1

glitch

n1

n2

n2

n1

Glitches usually cause no problems, but we will show how to fix them

41

Timing in combinatorial circuits

• Fixing the Glitch

B = 1 0
Y = 1

A = 0

C = 1

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + ACAC

Because of the redundant term A’ C, the
change on B has no effect when A=0 and C=1

42

Timing in Combinatorial Circuits

• Application of spikes: pulse generator

static theory: F = A' • A = 0

F
A

B C D

Hence F is not always 0 ==> pulse
D stays 1 during 3 gate delays
after A changes from 0 to 1

A

B
C

D

F

43

Summary

• Canonical expressions two-level networks

• Sum of Products

• Product of Sums

• Two-level simplification

• Multi-level networks

• Factorization

• Mapping to NAND-NAND and NOR-NOR networks

• Mapping to AND-OR-INV and OR-AND-INV gates

• Timing in combinatorial networks

• Time response of gates

• Time response of combinatorial circuits

• Fixing the Glitch

44

To do list

• Reading Material book “Digital Design”:

• Sections 2.2, 2.3.5, 2.5, 2.7 and 2.9

• Assignments for this lecture:

• Gated Practise Lecture 3

45

Thank you

46

	Slide 1: Logic Minimization
	Slide 2: Recap
	Slide 3: Recap
	Slide 4: Recap
	Slide 5: Outline
	Slide 6: Learning Objectives
	Slide 7: Canonical Expressions
	Slide 8: Canonical Expressions
	Slide 9: Canonical expressions – Sum of Products
	Slide 10: Canonical Expressions – Product of Sums
	Slide 11: Canonical Expressions
	Slide 12: Canonical Expressions
	Slide 13: Canonical Expressions
	Slide 14: Canonical Expressions
	Slide 15: Two-Level Simplification
	Slide 16: Two-Level Simplification
	Slide 17: Two-Level Simplification – Simplification Principle
	Slide 18: Two-level simplification – Karnaugh Maps (K-maps)
	Slide 19: Two-Level Simplification – Karnaugh Maps (K-maps)
	Slide 20: Two-Level Simplification – Karnaugh Maps (K-maps)
	Slide 23: Two-Level Simplification – Recipe Minimal Sum of Products
	Slide 24: Two-Level Simplification – Question 1
	Slide 25: Two-Level Simplification
	Slide 26: Two-Level Simplification
	Slide 27: Two-Level Simplification – Summary Two-Level Networks
	Slide 28: Multi-Level Networks
	Slide 29: Multi-Level Networks – Advantages
	Slide 30: Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR
	Slide 31: Multi-Level Networks - Conversion to NAND/NAND and NOR/NOR
	Slide 32: Multi-Level Networks
	Slide 34: Multi-Level Networks
	Slide 35: Multi-Level Networks – Question 2
	Slide 36: Multi-Level Networks – AND-OR-Invert & OR-AND-Invert gates
	Slide 37: Multi-Level Networks – Implementation Examples
	Slide 38: Timing in Combinatorial Circuits
	Slide 39: Timing in Combinatorial Circuits
	Slide 40: Timing in combinatorial circuits
	Slide 41: Timing in combinatorial circuits
	Slide 42: Timing in combinatorial circuits
	Slide 43: Timing in Combinatorial Circuits
	Slide 44: Summary
	Slide 45: To do list
	Slide 46

