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Learning Objectives

As student you should be able to:

• Explain how sequential networks work

• Interpret circuits with memory elements (i.e., latches, flip-flops)

• Explain Finite State Machines

• Design Finite State Machines (Moore and Mealy type)
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Outline

Sequential Networks

• Overview

• Bistable circuit

• Latches

• Flip-flops

Finite State Machines

• State Machine Concept

• Finite State Diagram

• Building a Finite State Machine from flip-flops and gates

• Moore Machine example

• Mealy Machine example

Summary
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Sequential Networks – Overview

5S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

• In previous lectures we considered combinational circuits:
• The value of each output depends solely on the inputs. 

• Here we introduce sequential circuits:
• The outputs depend on the inputs and on the past behavior of the circuit. 
• Such circuits include storage elements that store the values of logic signals. 
• The contents of the storage elements are said to represent the state of the circuit.

Motivation

• Once the alarm is triggered by the sensor, it must remain active even if the sensor 
output goes back to zero. 

• The alarm is turned off manually by means of a Reset input. 
• The circuit requires a memory element to remember

that the alarm has to be active until the Reset signal arrives.



Sequential Networks –Bistable Circuit
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• Fundamental building block of other state elements

• Two outputs: Q, Q

• No inputs

Back-to-back inverters Cross-coupled inverters

Same circuit!



Bistable Circuit Analysis
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• Consider the two possible cases:

– Q = 0: 

then Q = 1, Q = 0 (consistent)

– Q = 1: 

then Q = 0, Q = 1 (consistent)

• Stores 1 bit of state in the state variable, Q (or Q)

Stable

Stable
0 1 0

A B C 

What happens with 
an odd number of 
inverters?

-> 1 -> 1-> 0

oscillation!

-> 0



Sequential Networks – SR Latch Analysis
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• SR Latch

• Consider the four possible cases:
– S = 1, R = 0

– S = 0, R = 1

– S = 0, R = 0

– S = 1, R = 1



Sequential Networks – R-S Latch Analysis
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– S = 1, R = 0: 

then Q = 1 and Q = 0

Set the output

– S = 0, R = 1: 

then Q = 0 and Q = 1

Reset the output
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Sequential Networks – R-S Latch Analysis
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– S = 0, R = 0: 

then Q = Qprev

Memory!
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Truth Table
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similar to:

0/1

0/1

1/0

1/0

– S = 1, R = 1: 

then Q = 0, Q = 0

Invalid State

Q ≠ NOT Q
invalid/
forbidden



NAND SR Latch
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Circuit
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Sequential Networks – SR (NOR) Latch Analysis
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R Q

Q

SR Latch

Symbol

• SR stands for Set/Reset Latch

– Stores one bit of state (Q) 

• Control what value is being stored with S, R inputs
– Set: Make the output 1 

S = 1, R = 0, Q = 1

– Reset: Make the output 0 

S = 0, R = 1, Q = 0

– Memory: Retain value

S = 0, R = 0, Q = Qprev

• Must do something to avoid invalid state (when S = R = 1)



Sequential Networks – D Latch

13

D Latch

Symbol

CLK

D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes

– D (the data input): controls what the output changes to

• Function
– When CLK = 1, 

D passes through to Q (transparent)

– When CLK = 0, 

Q holds its previous value (memory)

• Avoids invalid case when 

Q ≠ NOT Q



Sequential Networks – D Latch Internal Circuit
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There is still a limitation:

CLK

D Q

Q 1->0->...0->1->...

Level-sensitive latches are transparent when clk is 
active. This gives problems when feedback is used.



Sequential Networks – D Flip-Flop Internal Circuit
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• Two back-to-back D latches (L1 and L2) controlled by 
complementary clocks

• When CLK = 0
– L1 is transparent

– L2 doesn’t change

– D passes through to N1

• When CLK = 1

– L2 is transparent

– L1 doesn’t change

– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0      1)
⎯ D passes through to Q 

• Hence, flip-flop is never transparent as a whole.

leader follower



Sequential Networks – D Flip-Flop
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D Flip-Flop

Symbols

D Q

Q

• Inputs: CLK, D

• Function:
– Samples D on rising edge of CLK

• When CLK rises from 0 to 1, D
passes through to Q

• Otherwise, Q holds its previous 
value

– Q changes only on rising edge of CLK

• Called edge-triggered
– Activated on the clock edge Clock edges

CLK

positive edge triggered

Can we also build a 
negative edge triggered 
D Flip-Flop?

A clock that updates all 
memory elements (flip-
flops) at exactly the same 
moment (the active clock 
edge) allows us to design 
circuits that compute a 
next state from a current 
state in a well-defined 
manner!



Sequential Networks – D Latch vs. D Flip-Flop
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Registers: One or More Flip-flops

18

CLK

D Q

D Q

D Q

D Q

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D
3:0

4 4

CLK

Q
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4-bit Register

4-bit Register

Easier to draw!
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Two ways to draw a register



Enabled Flip-Flops
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Internal

Circuit

D Q
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0
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D Q
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Symbol

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1: D passes through to Q on the clock edge 

– EN = 0: the flip-flop retains its previous state

Another way to 
implement it?

It’s useful when we 
wish to load a new 
value into a flip-flop 
only sometimes, 
rather than on every 
clock edge

No, never put logic 
in the clock. Spikes 
may occur and 
cause unwanted 
state changes.



Resettable Flip-Flops
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Symbols

D Q

Reset
r

• Inputs: CLK, D, Reset

• Function:
– Reset = 1:  Q is forced to 0 

– Reset = 0:  flip-flop behaves as ordinary D flip-flop

It’s useful when we want to
force a known state (i.e., 0) into
all the flop-flops in a system
when we first turn it ON.



Resettable Flip-Flops
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• Two types:

– Synchronous:   resets at the clock edge only

– Asynchronous: resets immediately when Reset = 1

• Asynchronously resettable flip-flop requires 
changing the internal circuitry of the flip-flop

• Synchronously resettable flip-flop:

Internal

Circuit

D Q

CLK

D
Q

Reset

Sync. reset:

clk:

Async. reset:

clk:



Settable Flip-Flops
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Symbols

D Q

Set
s

• Inputs: CLK, D, Set

• Function:
– Set = 1:  Q is set to 1 

– Set = 0:  the flip-flop behaves as ordinary D flip-flop



EE1D1: Digital Systems A

Finite State Machines (FSM)
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• FSM provides a systematic way to design synchronous 
sequential circuits given a functional specification

• Consists of:

– State register
• Stores current state 

• Loads next state at clock edge

– Combinational logic
• Computes the next state

• Computes the outputs

Finite State Machine (FSM)

Why we call it Finite State Machine?



Moore and Mealy FSM
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•W: primary inputs
•Q: present (current) outputs of the flip-flops, i.e. state of circuit.
•Z: outputs

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

•Moore machine: outputs depend only on the state (flip-flops) of the circuit.

•Mealy machine: outputs depend on both the state (flip-flops) and the primary inputs

• Mealy machines can be smaller 
than Moore machines for same 
functionality (see next 
example).  

• However, their usage may 
cause problems: When using 
feedback loops over FSMs, 
combinational loops may occur 
without a register (instability!).



FSM: Basic Design Steps
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1. State Diagram

2. State Table

3. State Assignment

4. Choice of Flip-Flops and Derivation of Next-State

and Output Expressions

5. Implementation of Next-State and Output Expressions 

using Logic Gates

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.



Example: Sequence Detector using Moore Style
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Design a synchronous FSM that has one input (w) and one output (z)
The output (z) must be equal 1 if during two subsequent clock cycles the input (w) was
equal 1. Otherwise, z must be 0.

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.



0

Example: Sequence Detector using Moore Style
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• State Diagram • State Table

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.



Example: Sequence Detector using Moore Style
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• State-assigned table

d = don’t care (X)

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

• State Table

Note: for next state variables we sometimes 
also use the following notation: y2

+ y1
+



Example: Sequence Detector using Moore Style

30S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.



Example: Sequence Detector using Moore Style

31S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.



Example: Sequence Detector using Moore Style
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• Timing diagram

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

A A AA ABB BC C C BA



Example: Sequence Detector using Mealy Style
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Mealy 
Machine

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10

w : 0 1 0 1 1 0 1 1 1 0 1 

z : 0 0 0 0 1 0 0 1 1 0 0 

A 

w 0 = z 0 = 

w 1 = z 1 = B w 0 = z 0 = 

Reset 

w 1 = z 0 = 

Present Next state Output z 

state w = 0 w = 1 w = 0 w = 1 

A A B 0 0 
B A B 0 1 

For a Mealy machine, 
output values are given 
per state transition 
instead of per state 
(Moore).

Also note: now z can 
become 1 in same clock 
cycle as cycle where w is 
1 for the second time. 

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.



Example: Sequence Detector using Mealy Style
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Present Next state Output z 

state w = 0 w = 1 w = 0 w = 1 

A A B 0 0 
B A B 0 1 

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

A BA A AB B B B B A



Summary

• Sequential networks

• Synchronous/asynchronous sequential systems 

• Latches

• Flip-flops: Edge/level triggered

• Finite State Machines

• Finite State Diagram

• Design method to go from a problem to an FSM implementation

• Moore and Mealy Machines
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To Do List

• Reading Material book “Digital Design”:

• Sections 3.1 – 3.3 (not 3.2.7)

• Assignments for this lecture:

• Gated Practice Assignment Lecture 6
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Thank you
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