

EE1D1: Digital Systems A

BSc. EE, year 1, 2025-2026, lecture 6

Sequential Logic

Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science

Learning Objectives

As student you should be able to:

- Explain how sequential networks work
- Interpret circuits with memory elements (i.e., latches, flip-flops)
- Explain Finite State Machines
- Design Finite State Machines (Moore and Mealy type)

Outline

Sequential Networks

- Overview
- Bistable circuit
- Latches
- Flip-flops

Finite State Machines

- State Machine Concept
- Finite State Diagram
- Building a Finite State Machine from flip-flops and gates
- Moore Machine example
- Mealy Machine example

Summary

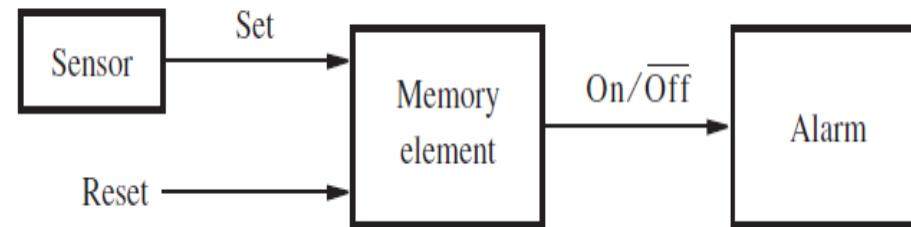
EE1D1: Digital Systems A

Sequential Networks

Sequential Networks – Overview

- In previous lectures we considered **combinational circuits**:
 - The value of each output depends solely on the inputs.
- Here we introduce **sequential circuits**:
 - The outputs depend on the inputs and on the past behavior of the circuit.
 - Such circuits include storage elements that store the values of logic signals.
 - The contents of the storage elements are said to represent the *state* of the circuit.

Motivation

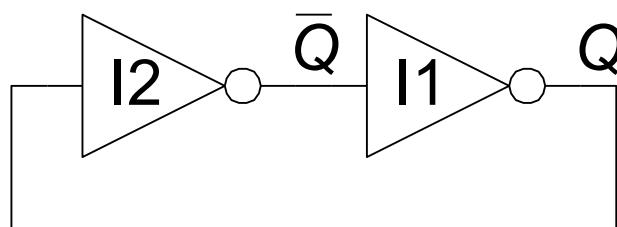
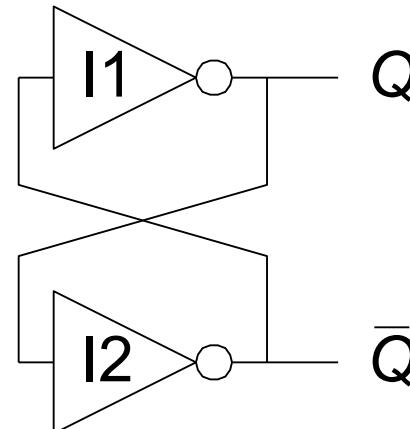


- Once the alarm is triggered by the sensor, it must remain active even if the sensor output goes back to zero.
- The alarm is turned off manually by means of a *Reset* input.
- The circuit requires a **memory element** to remember that the alarm has to be active until the *Reset* signal arrives.

Sequential Networks –Bistable Circuit

- Fundamental building block of other state elements
- Two outputs: Q , \bar{Q}
- No inputs

Same circuit!



Back-to-back inverters

Cross-coupled inverters

Bistable Circuit Analysis

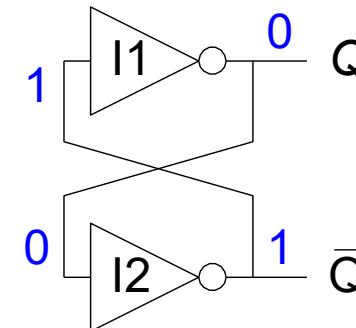
- Consider the two possible cases:

- $Q = 0$:

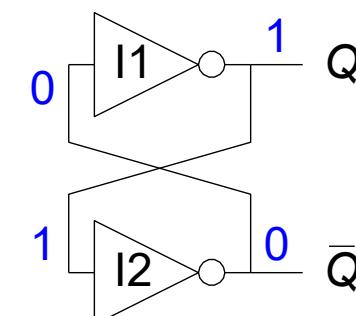
- then $\bar{Q} = 1, Q = 0$ (consistent)

- $Q = 1$:

- then $\bar{Q} = 0, Q = 1$ (consistent)



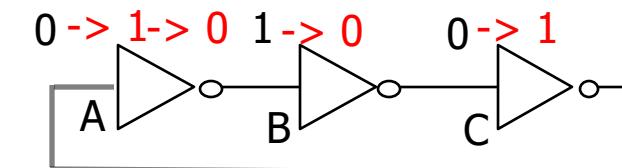
Stable



Stable

- Stores 1 bit of state in the state variable, Q (or \bar{Q})

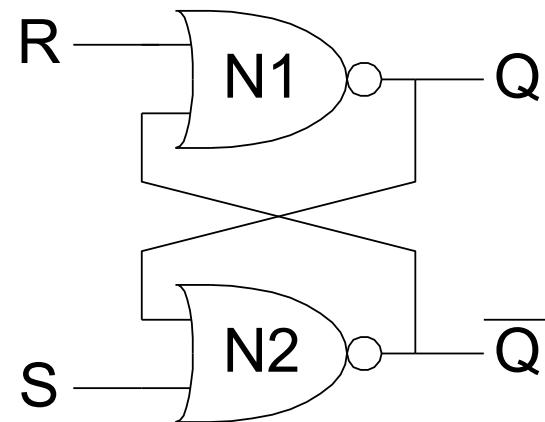
What happens with an odd number of inverters?



oscillation!

Sequential Networks – SR Latch Analysis

- **SR Latch**



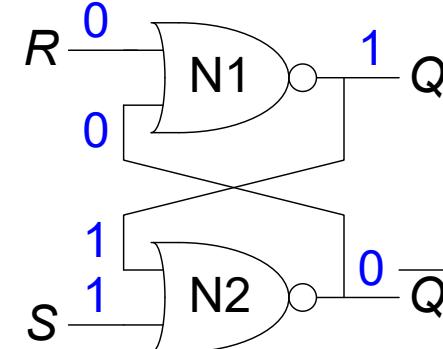
- Consider the four possible cases:
 - $S = 1, R = 0$
 - $S = 0, R = 1$
 - $S = 0, R = 0$
 - $S = 1, R = 1$

Sequential Networks – R-S Latch Analysis

– $S = 1, R = 0$:

then $Q = 1$ and $\bar{Q} = 0$

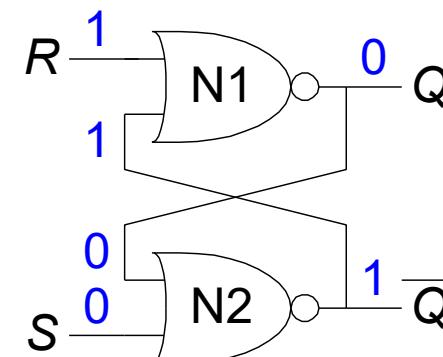
Set the output



– $S = 0, R = 1$:

then $Q = 0$ and $\bar{Q} = 1$

Reset the output



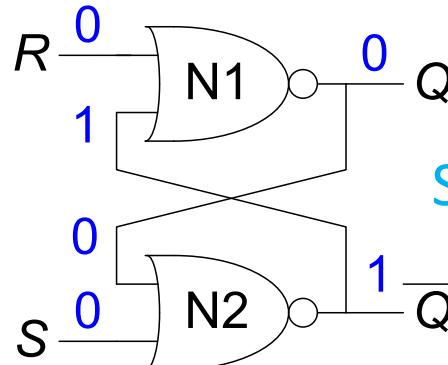
Sequential Networks – R-S Latch Analysis

– $S = 0, R = 0$:

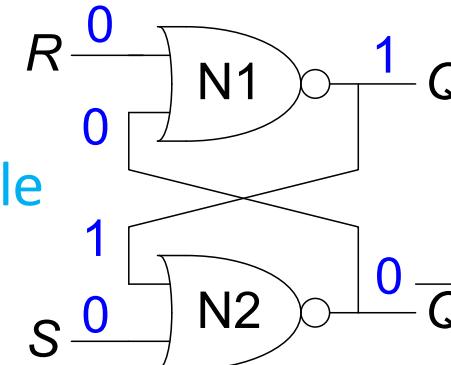
then $Q = Q_{prev}$

Memory!

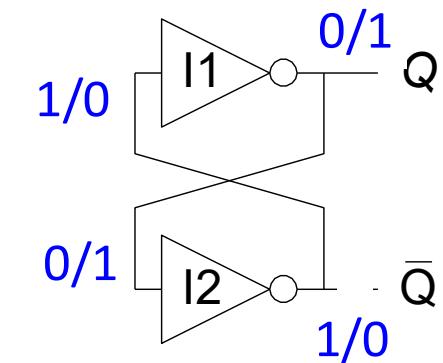
$Q_{prev} = 0$



$Q_{prev} = 1$



similar to:

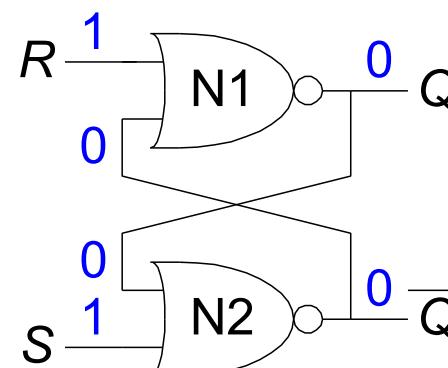


– $S = 1, R = 1$:

then $Q = 0, \bar{Q} = 0$

Invalid State

$\bar{Q} \neq \text{NOT } Q$

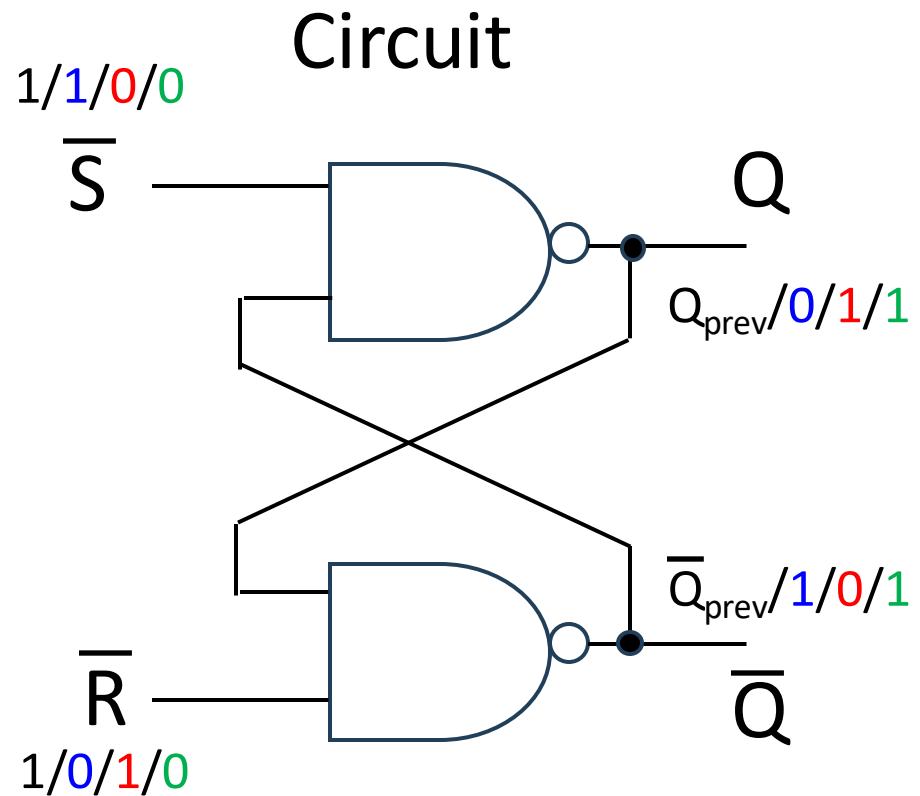


Truth Table

S	R	Q	\bar{Q}
0	0	Q_{prev}	\bar{Q}_{prev}
0	1	0	1
1	0	1	0
1	1	0	0

invalid/
forbidden

NAND SR Latch



Truth Table

\bar{S}	\bar{R}	Q	\bar{Q}
1	1	Q_{prev}	\bar{Q}_{prev}
1	0	0	1
0	1	1	0
0	0	1	1

→

S	R	Q	\bar{Q}
0	0	Q_{prev}	\bar{Q}_{prev}
0	1	0	1
1	0	1	0
1	1	1	1

hold

reset

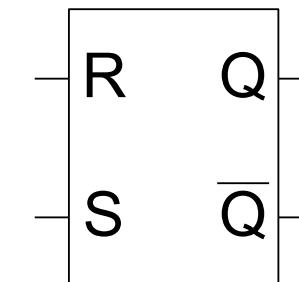
set

invalid

Sequential Networks – SR (NOR) Latch Analysis

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
 - Set: Make the output 1
 $S = 1, R = 0, Q = 1$
 - Reset: Make the output 0
 $S = 0, R = 1, Q = 0$
 - Memory: Retain value
 $S = 0, R = 0, Q = Q_{prev}$

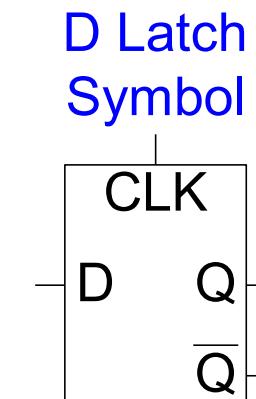
SR Latch
Symbol



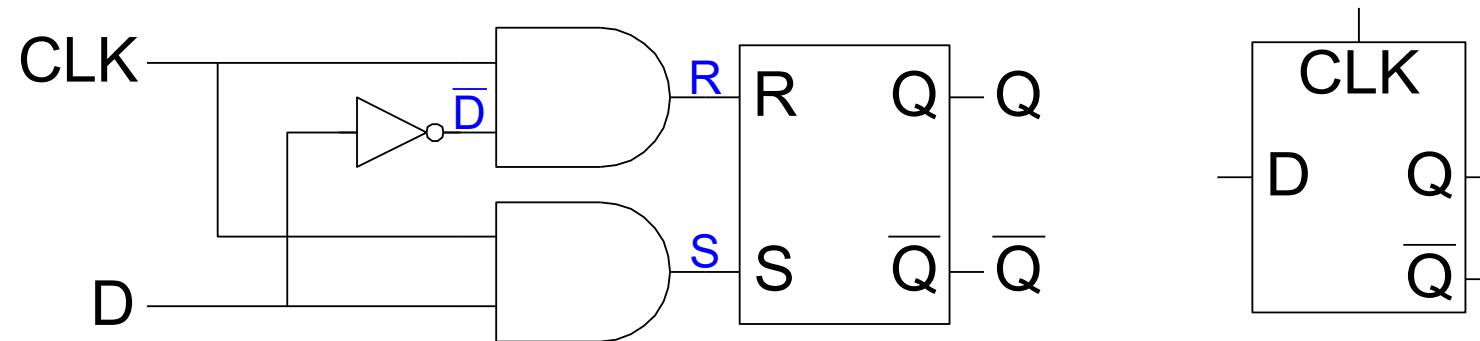
- Must do something to avoid invalid state (when $S = R = 1$)

Sequential Networks – D Latch

- Two inputs: CLK , D
 - CLK : controls *when* the output changes
 - D (the data input): controls *what* the output changes to
- Function
 - When $CLK = 1$,
 D passes through to Q (*transparent*)
 - When $CLK = 0$,
 Q holds its previous value (*memory*)
- Avoids invalid case when
$$Q \neq \text{NOT } \bar{Q}$$

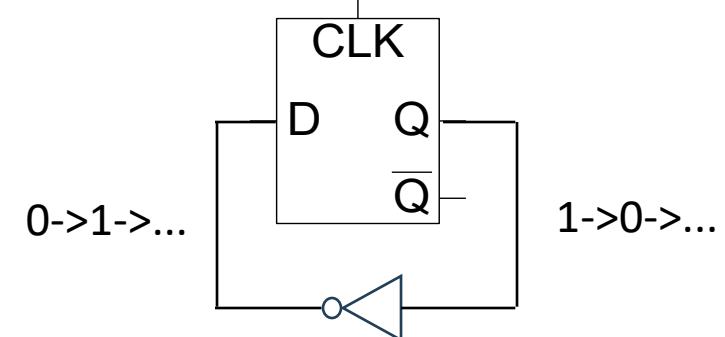


Sequential Networks – D Latch Internal Circuit



CLK	D	\bar{D}	S	R	Q	\bar{Q}
0	X	\bar{X}	0	0	Q_{prev}	\bar{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

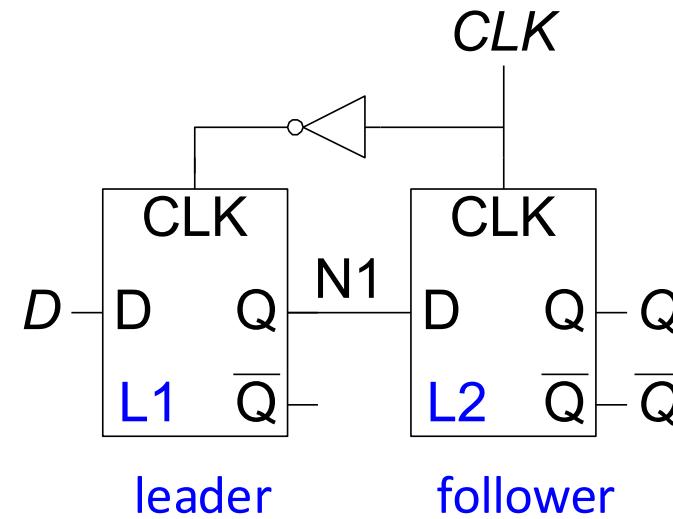
There is still a limitation:



Level-sensitive latches are transparent when clk is active. This gives problems when feedback is used.

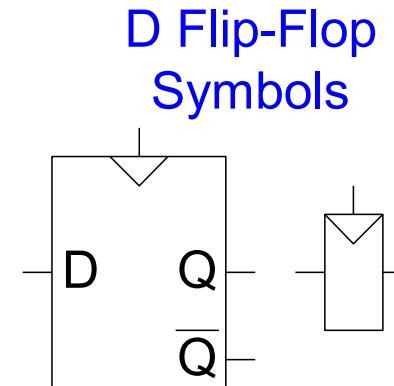
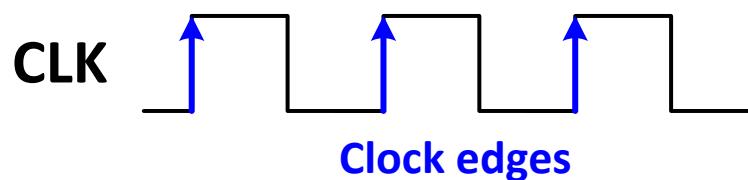
Sequential Networks – D Flip-Flop Internal Circuit

- Two back-to-back D latches (L1 and L2) controlled by complementary clocks
- When $CLK = 0$
 - L1 is transparent
 - L2 doesn't change
 - D passes through to $N1$
- When $CLK = 1$
 - L2 is transparent
 - L1 doesn't change
 - $N1$ passes through to Q
- Thus, on the edge of the clock (when CLK rises from 0 $\rightarrow 1$)
 - D passes through to Q
- Hence, flip-flop is never transparent as a whole.



Sequential Networks – D Flip-Flop

- Inputs: CLK, D
- Function:
 - Samples D on rising edge of CLK
 - When CLK rises from 0 to 1, D passes through to Q
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of CLK
- Called *edge-triggered*
 - Activated on the *clock edge*

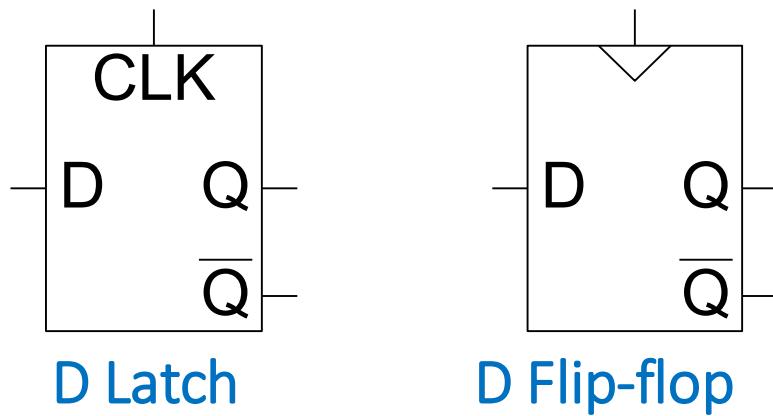
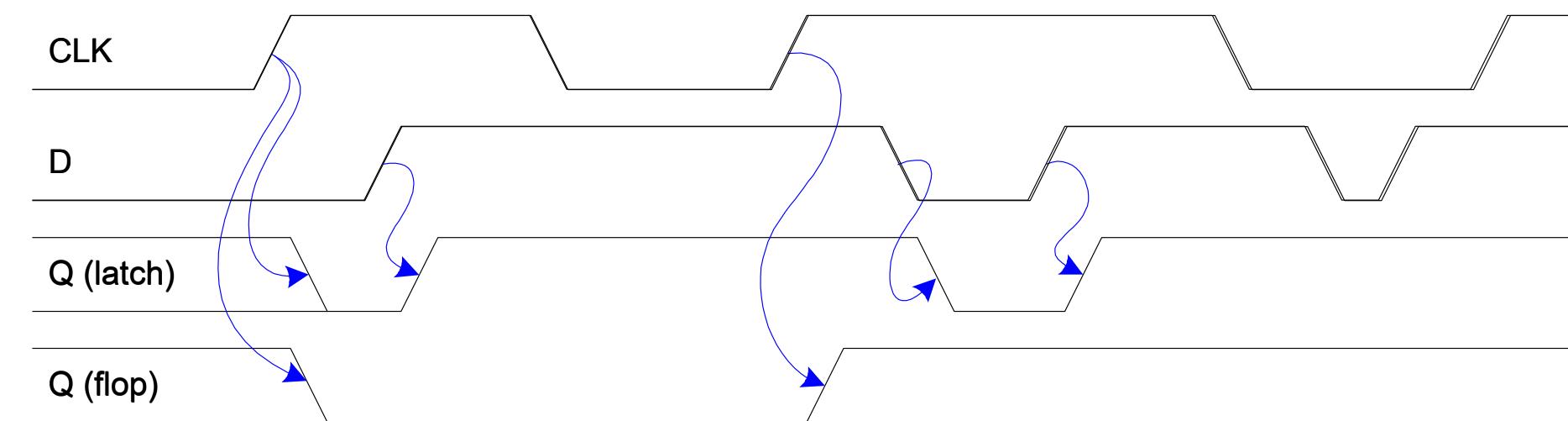


positive edge triggered

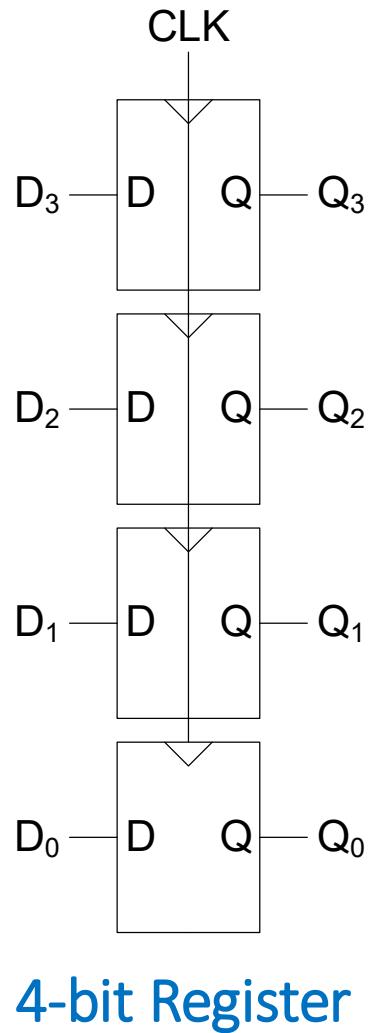
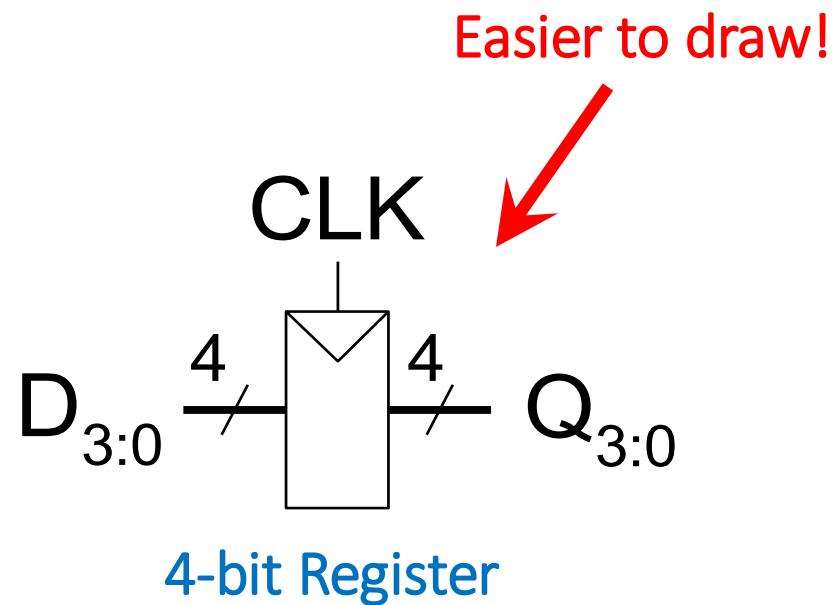
A clock that updates all memory elements (flip-flops) at exactly the same moment (the active clock edge) allows us to design circuits that compute a next state from a current state in a well-defined manner!

Can we also build a negative edge triggered D Flip-Flop?

Sequential Networks – D Latch vs. D Flip-Flop



Registers: One or More Flip-flops

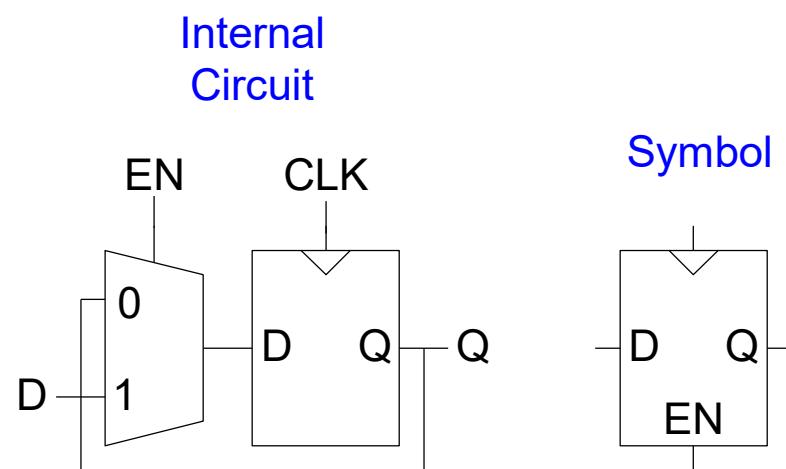


Two ways to draw a register

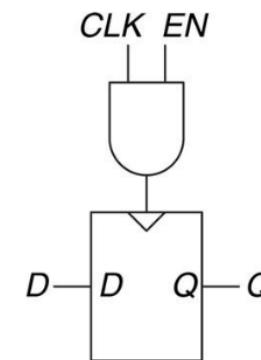
Enabled Flip-Flops

- **Inputs: CLK , D , EN**
 - The enable input (EN) controls when new data (D) is stored
- **Function**
 - $EN = 1$: D passes through to Q on the clock edge
 - $EN = 0$: the flip-flop retains its previous state

It's useful when we wish to load a new value into a flip-flop only sometimes, rather than on every clock edge



Another way to implement it?



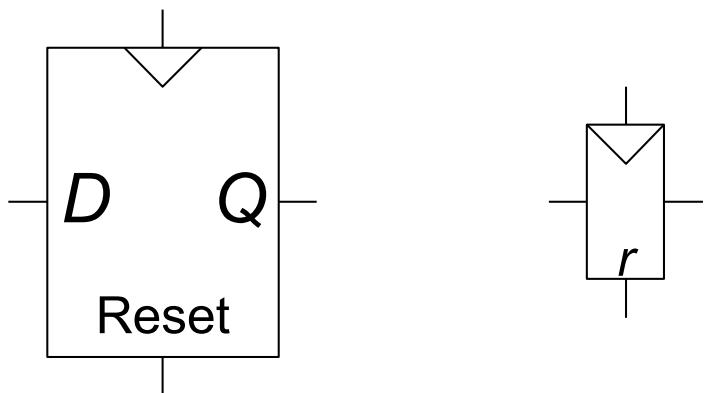
No, never put logic in the clock. Spikes may occur and cause unwanted state changes.

Resettable Flip-Flops

- Inputs: CLK , D , Reset
- Function:
 - **Reset = 1**: Q is forced to 0
 - **Reset = 0**: flip-flop behaves as ordinary D flip-flop

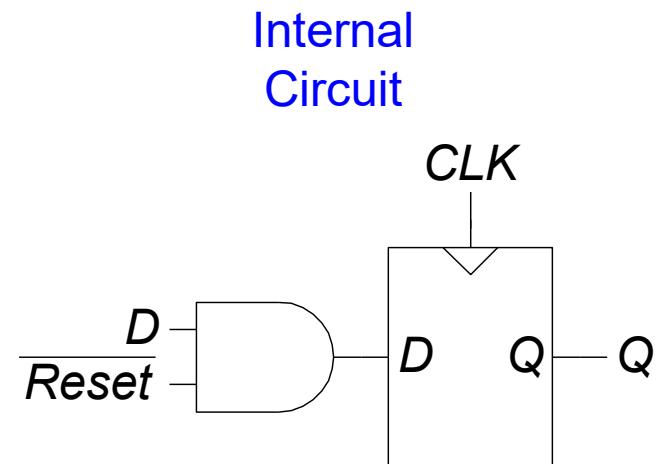
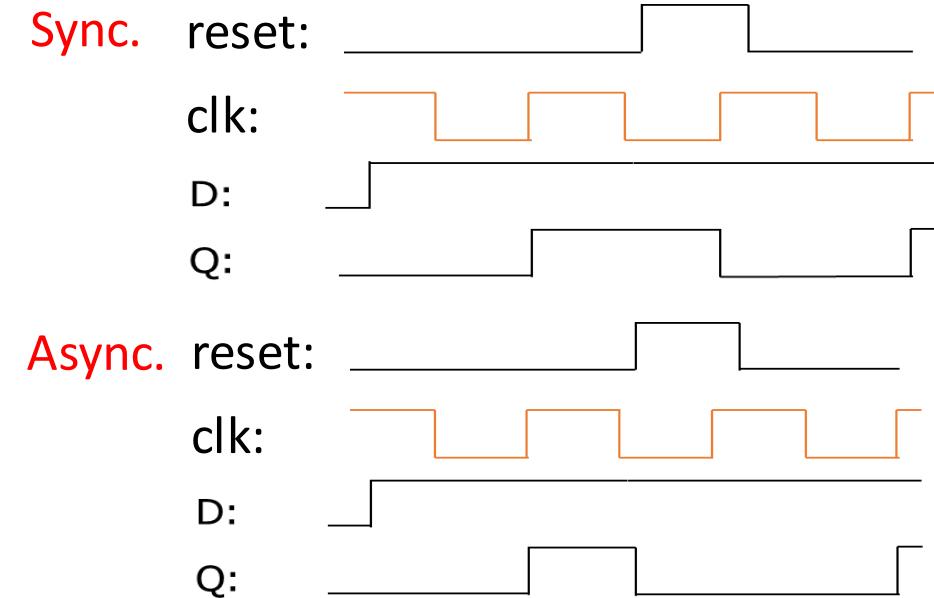
It's useful when we want to force a known state (i.e., 0) into all the flop-flops in a system when we first turn it ON.

Symbols



Resettable Flip-Flops

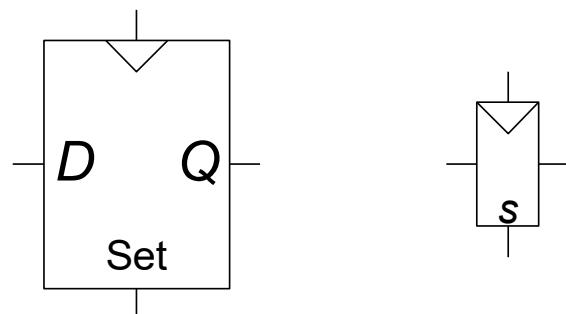
- Two types:
 - **Synchronous**: resets at the clock edge only
 - **Asynchronous**: resets immediately when $Reset = 1$
- **Asynchronously** resettable flip-flop requires changing the internal circuitry of the flip-flop
- **Synchronously** resettable flip-flop:



Settable Flip-Flops

- Inputs: CLK , D , Set
- Function:
 - $Set = 1$: Q is set to 1
 - $Set = 0$: the flip-flop behaves as ordinary D flip-flop

Symbols



EE1D1: Digital Systems A

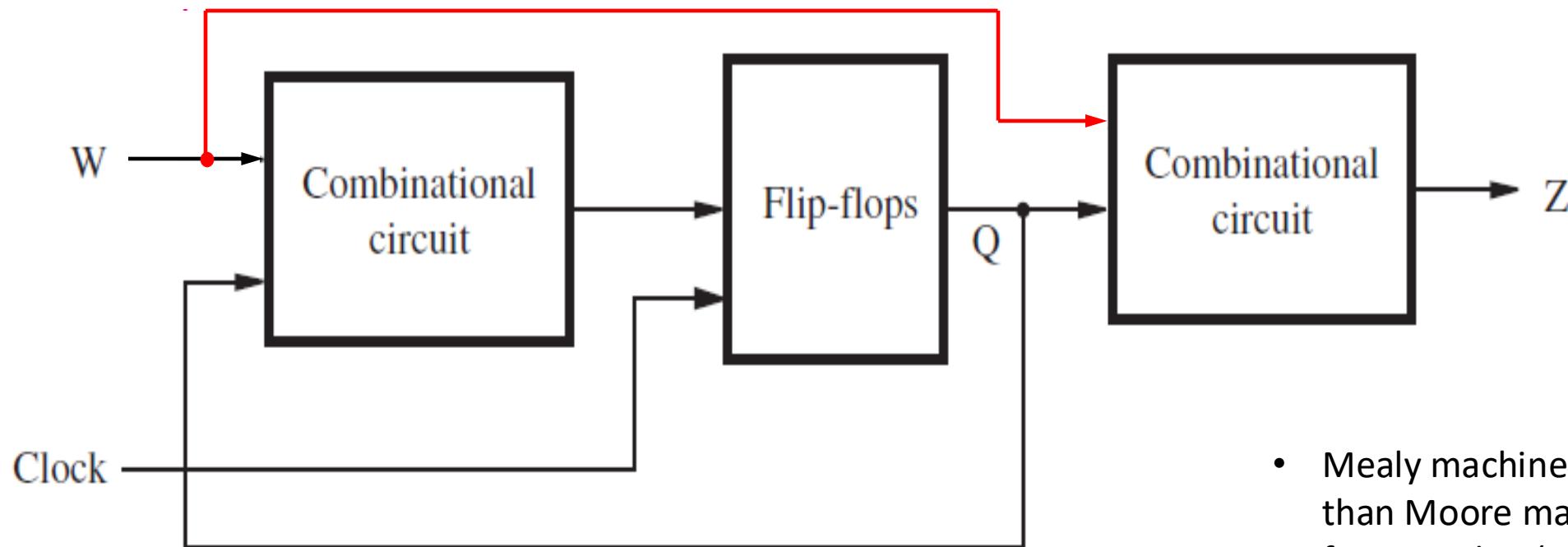
Finite State Machines (FSM)

Finite State Machine (FSM)

- FSM provides a systematic way to design synchronous sequential circuits given a functional specification
- Consists of:
 - **State register**
 - Stores current state
 - Loads next state at clock edge
 - **Combinational logic**
 - Computes the next state
 - Computes the outputs

Why we call it Finite State Machine?

Moore and Mealy FSM



- W: primary inputs
- Q: present (current) outputs of the flip-flops, i.e. state of circuit.
- Z: outputs
- **Moore machine**: outputs depend only on the state (flip-flops) of the circuit.
- **Mealy machine**: outputs depend on both the state (flip-flops) and the primary inputs

- Mealy machines can be smaller than Moore machines for same functionality (see next example).
- However, their usage may cause problems: When using feedback loops over FSMs, combinational loops may occur without a register (instability!).

FSM: Basic Design Steps

1. State Diagram

2. State Table

3. State Assignment

4. Choice of Flip-Flops and Derivation of Next-State and Output Expressions

5. Implementation of Next-State and Output Expressions using Logic Gates

Example: Sequence Detector using Moore Style

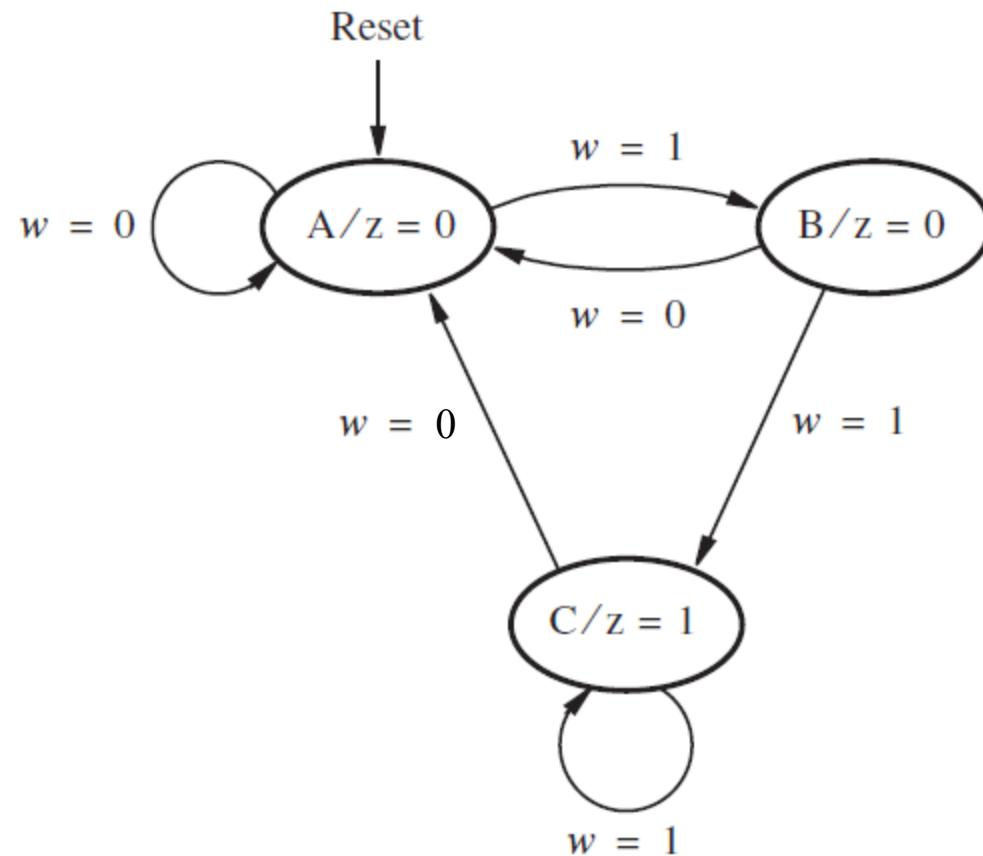
Design a synchronous FSM that has one input (w) and one output (z)

The output (z) must be equal 1 if during two subsequent clock cycles the input (w) was equal 1. Otherwise, z must be 0.

Clock cycle:	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	0	1	0	0	1	1	0

Example: Sequence Detector using Moore Style

- State Diagram



- State Table

Present state	Next state		Output z
	$w = 0$	$w = 1$	
A	A	B	0
B	A	C	0
C	A	C	1

Example: Sequence Detector using Moore Style

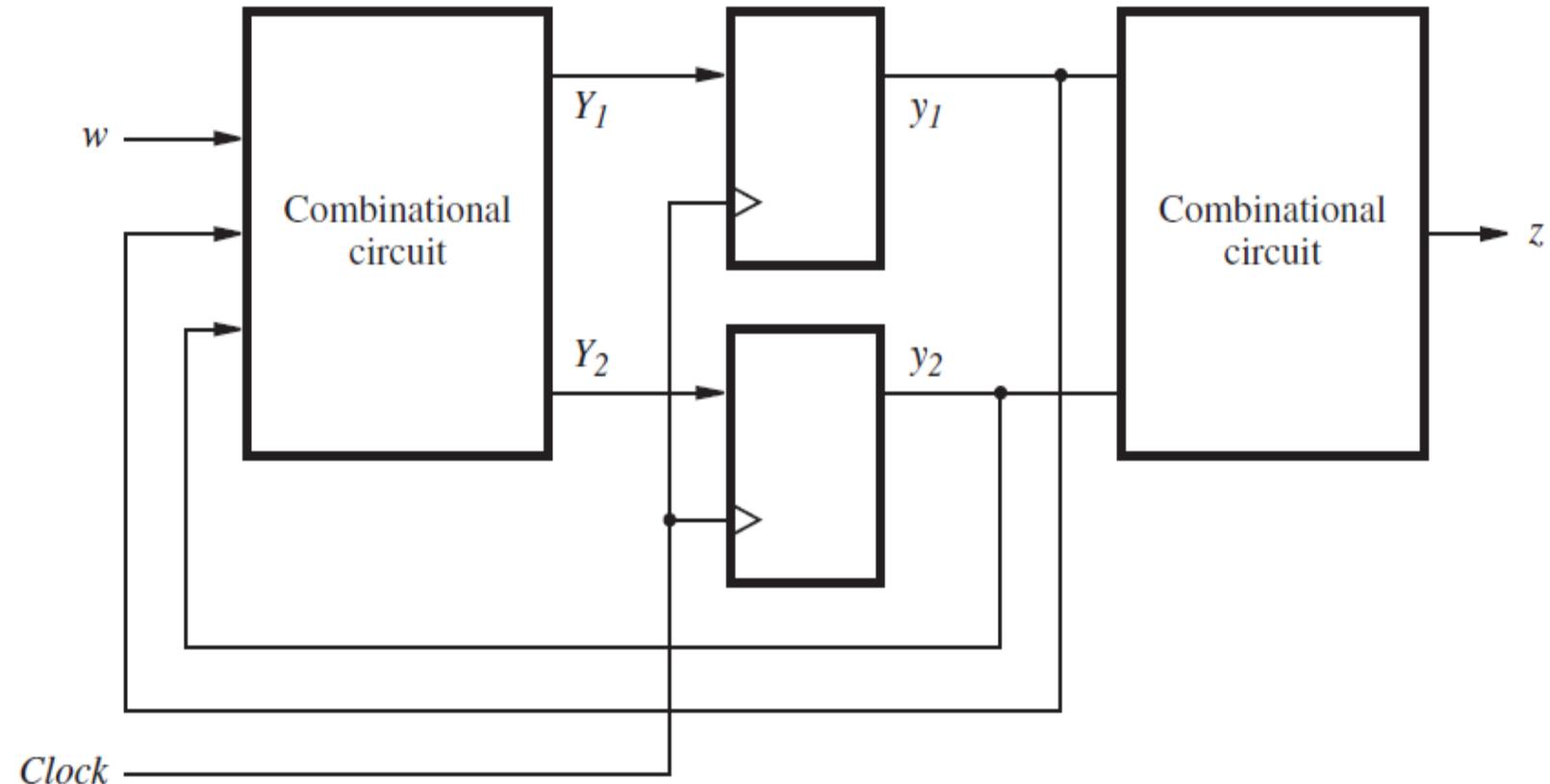
- **State Table**

Present state	Next state		Output z
	$w = 0$	$w = 1$	
A	A	B	0
B	A	C	0
C	A	C	1

- **State-assigned table**

Present state	Next state		Output z
	$w = 0$	$w = 1$	
$y_2 y_1$	$Y_2 Y_1$	$Y_2 Y_1$	
A	00	00	0
B	01	00	0
C	10	00	1
	11	dd	d

$d = \text{don't care (X)}$



Note: for next state variables we sometimes also use the following notation: $y_2^+ y_1^+$

Example: Sequence Detector using Moore Style

Present state	Next state		Output z	
	$w = 0$	$w = 1$		
	y_2y_1	Y_2Y_1		
A	00	00	01	0
B	01	00	10	0
C	10	00	10	1
11	dd	dd	d	

State transition table for $w = 0$:

y_2y_1	00	01	11	10
0	0	0	d	0
1	1	0	d	0

State transition table for $w = 1$:

y_2y_1	00	01	11	10
0	0	0	d	0
1	0	1	d	1

Output table:

y_2	y_1	0	1
0	0	0	0
1	1	d	0

Ignoring don't cares

$$Y_1 = w\bar{y}_1\bar{y}_2$$

Using don't cares

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$Y_2 = w y_1 \bar{y}_2 + w \bar{y}_1 y_2$$

$$Y_2 = w y_1 + w y_2 \\ = w(y_1 + y_2)$$

$$z = \bar{y}_1 y_2$$

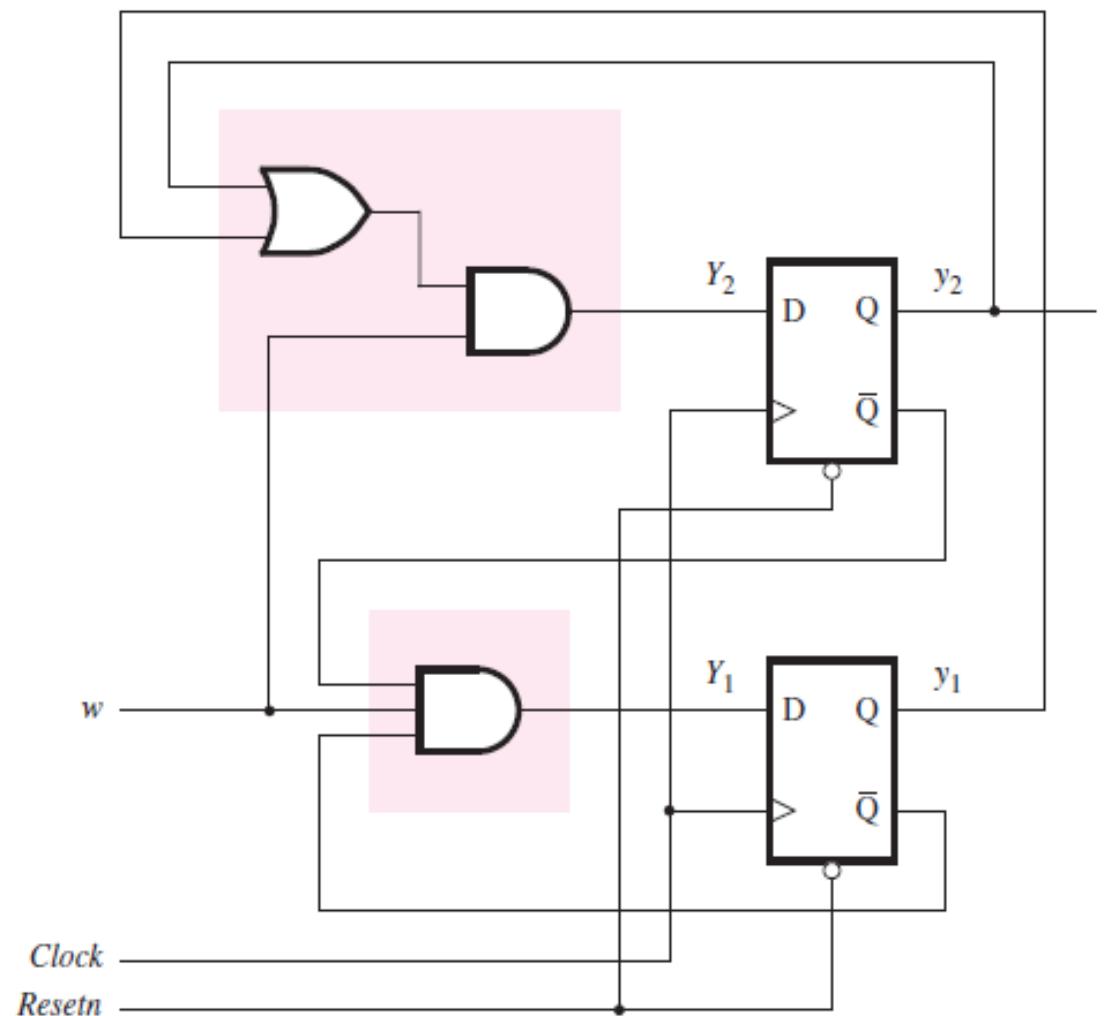
$$z = y_2$$

Example: Sequence Detector using Moore Style

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$Y_2 = w(y_1 + y_2)$$

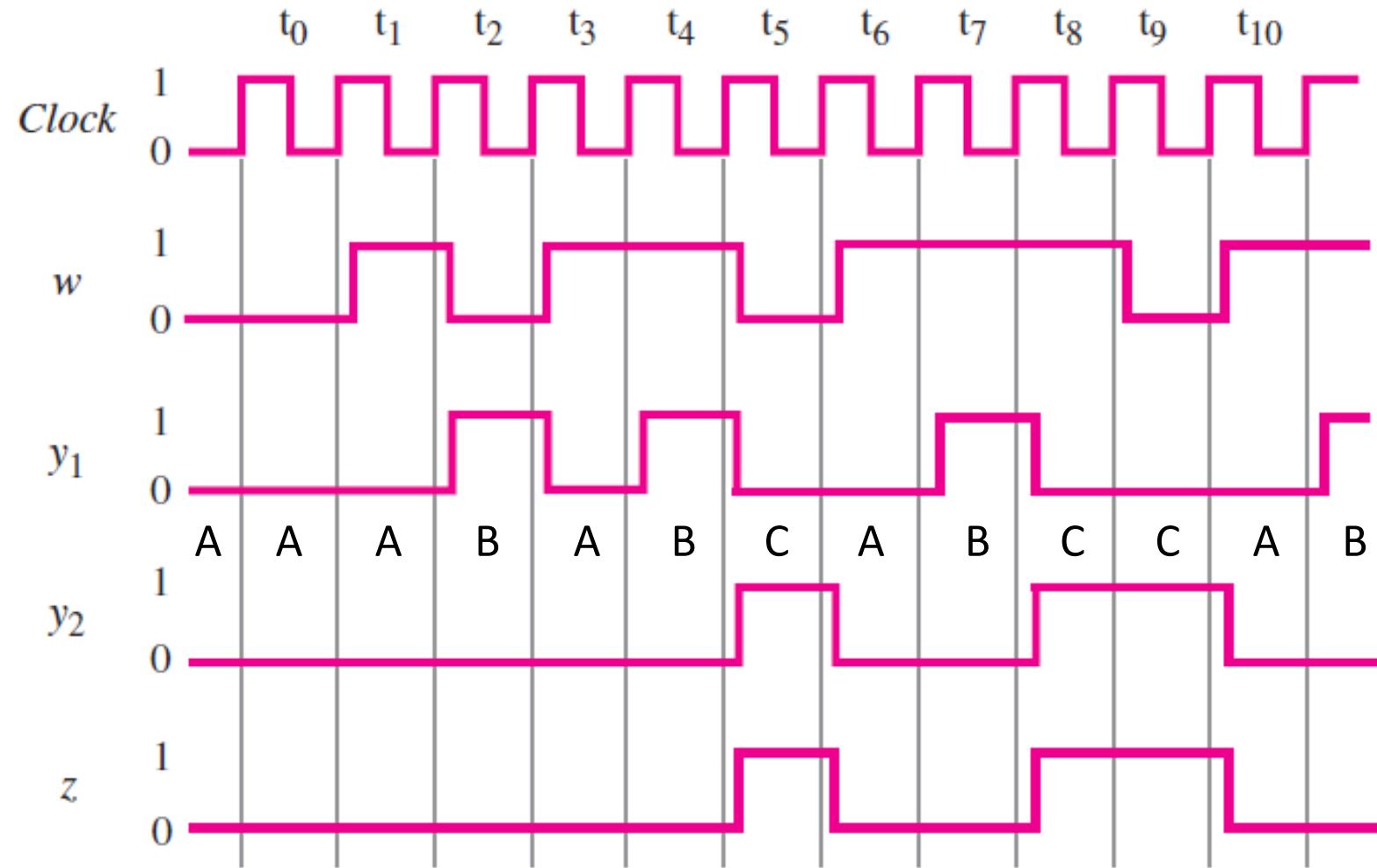
$$z = y_2$$



Present state	Next state		Output z	
	$w = 0$	$w = 1$		
	$y_2 y_1$	$Y_2 Y_1$		
A	00	00	01	0
B	01	00	10	0
C	10	00	10	1
	11	dd	dd	d

Example: Sequence Detector using Moore Style

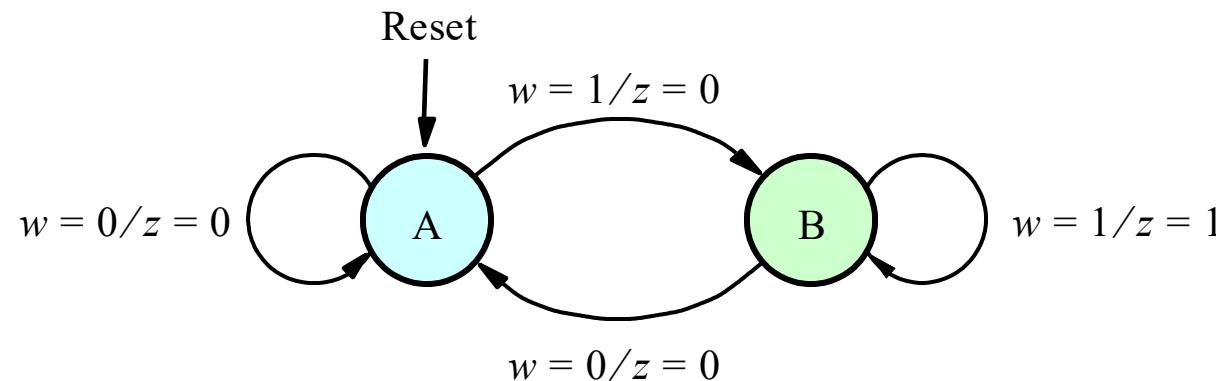
- Timing diagram



Example: Sequence Detector using Mealy Style

Mealy
Machine

Clock cycle:	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	1	0	0	1	1	0	0



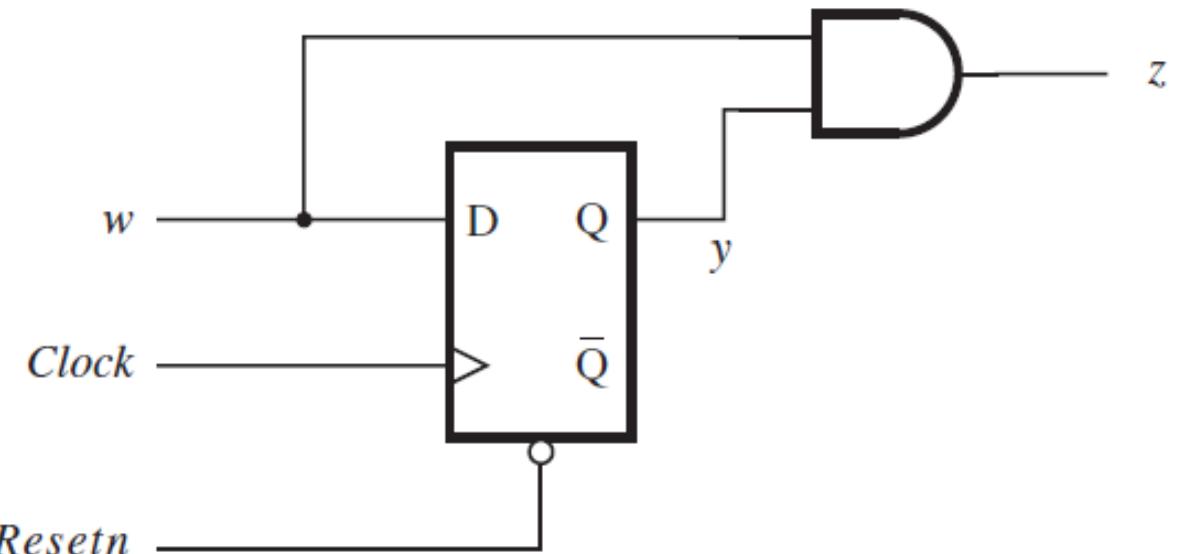
For a Mealy machine, output values are given per state transition instead of per state (Moore).

Also note: now z can become 1 in same clock cycle as cycle where w is 1 for the second time.

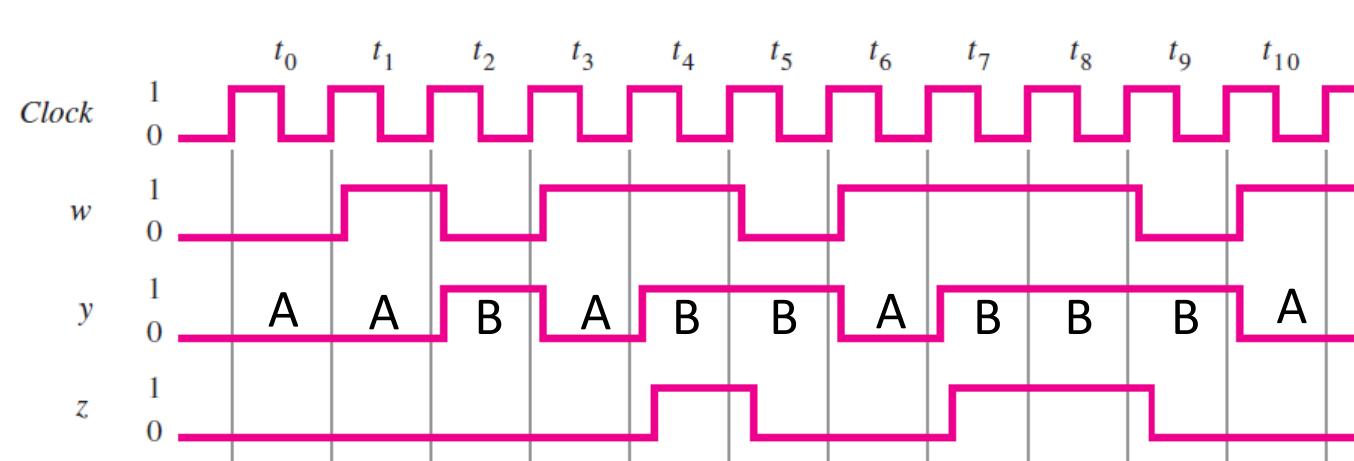
Present state	Next state		Output z	
	$w = 0$	$w = 1$	$w = 0$	$w = 1$
A	A	B	0	0
B	A	B	0	1

Example: Sequence Detector using Mealy Style

Present state	Next state		Output z	
	$w = 0$	$w = 1$	$w = 0$	$w = 1$
A	A	B	0	0
B	A	B	0	1



Present state	Next state		Output	
	$w = 0$	$w = 1$	$w = 0$	$w = 1$
y	Y	Y	z	z
A	0	0	1	0
B	1	0	1	1



Summary

- Sequential networks
 - Synchronous/asynchronous sequential systems
 - Latches
 - Flip-flops: Edge/level triggered
- Finite State Machines
 - Finite State Diagram
 - Design method to go from a problem to an FSM implementation
 - Moore and Mealy Machines

To Do List

- Reading Material book “Digital Design”:
 - Sections 3.1 – 3.3 (not 3.2.7)
- Assignments for this lecture:
 - Gated Practice Assignment Lecture 6

Thank you