EE1D1: Digital Systems A

BSc. EE, year 1, 2025-2026, lecture 6

Sequential Logic

Computer Engineering Lab
Faculty of Electrical Engineering, Mathematics & Computer Science

]
TUDelft

Learning Objectives

As student you should be able to:
« Explain how sequential networks work
 Interpret circuits with memory elements (i.e., latches, flip-flops)

» Explain Finite State Machines

 Design Finite State Machines (Moore and Mealy type)

Sequential Networks
» Overview

« Bistable circuit

« Latches

 Flip-flops

Finite State Machines

 State Machine Concept

Finite State Diagram

Building a Finite State Machine from flip-flops and gates
Moore Machine example

Mealy Machine example

Summary

EE1D1: Digital Systems A

Sequential Networks

Sequential Networks — Overview

 In previous lectures we considered combinational circuits:
« The value of each output depends solely on the inputs.

» Here we introduce sequential circuits:
« The outputs depend on the inputs and on the past behavior of the circuit.
 Such circuits include storage elements that store the values of logic signals.
« The contents of the storage elements are said to represent the state of the circuit.

Motivation

Set

Sensor p———=

Memory On/Off

— Alarm

element
Reset —————»

« Once the alarm is triggered by the sensor, it must remain active even if the sensor
output goes back to zero.

« The alarm is turned off manually by means of a Reset input.

« The circuit requires a memory element to remember
that the alarm has to be active until the Reset signal arrives.

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Sequential Networks —Bistable Circuit

e Fundamental building block of other state elements

e Two outputs: Q, Q

e NO Iinputs
Same circuit!

YLy

Back-to-back inverters Cross-coupled inverters

Bistable Circuit Analysis

e Consider the two possible cases:
— Q:O: 1
then Q =1, Q = 0 (consistent)

-Q=1:
then Q =0, Q = 1 (consistent)

e Stores 1 bit of state in the state variable, Q (or Q)

Stable

What happens with
an odd number of
inverters?

0->1->01->0 0->1
A B C |

oscillation!

Stable

Sequential Networks — SR Latch Analysis

* SR Latch R

e Consider the four possible cases:
-5=1,R=0
-$5=0,R=1
-$5=0,R=0
-5=1,R=1

Sequential Networks — R-S Latch Analysis

-S5=1 R=0:
thenQ=1and Q=0
Set the output

-S=0,R=1:
thenQ=0and Q=1
Reset the output

Sequential Networks — R-S Latch Analysis

0/1
o

1/0

Ol

prev

invalid/

—-S= O, R =0: Qprev = 0 Qprev = 1 similar to:
thenQ=Q,,, Rr? D =
O 1/0
Memory! 1 T
0
s M' 1 7 W
—S _ 1 R _ 1 Truth Table
' _ S R|Q Q
then Q = O, Q=0 0O O Qpreva
Invalid State S &8 p
QzNOTQ T 110 0

forbidden

NAND SR Latch

Circuit
1/1/0/0 Truth Table
S —— Q
—] Qre,/0/1/1 S R|Q C__J S R | Q C:D

1 1 C‘)prerprev 0 0 Op,erp,ev hold
1 0|0 1 mm 0 1|0 1 reset
0 1 1 0 1 0 1 0 §et _

Qe /1/0/1 0 011 1 1 1 1 1 invalid

Sequential Networks — SR (NOR) Latch Analysis

e SR stands for Set/Reset Latch
— Stores one bit of state (Q)

e Control what value is being stored with S, R inputs

— Set: Make the output 1 SR Latch
S=1,R=0,Q=1 Symbol
— Reset: Make the output O
$S=0,R=1,Q=0 IR QF
— Memory: Retain value s Q-
S=0,R=0,Q=0

prev

e Must do something to avoid invalid state (when S=R =1)

Sequential Networks — D Latch

e Two inputs: CLK, D
— CLK: controls when the output changes
— D (the data input): controls what the output changes to

e Function
— When CLK =1, D Latch
Symbol
D passes through to Q (transparent) C||_K
- Wheﬂ CLK=O, _D Q—
Q holds its previous value (memory) Q-

e Avoids invalid case when
Q#NOT Q

Sequential Networks — D Latch Internal Circuit

|
CLK

CLK — R B
s)R Qb [OK
CLK D|D S R|Q @
0 X Y 0 0 Qprer_prev
1 0 1 0 1 0 1
1 1 0 1 0 1 0

There is still a limitation:

|
CLK
D

ol O

0->1->... 1->0->...

o<

Level-sensitive latches are transparent when clk is
active. This gives problems when feedback is used.

Sequential Networks — D Flip-Flop Internal Circuit

Two back-to-back D latches (L1 and L2) controlled by

complementary clocks

When CLK=0

— L1 istransparent
— L2 doesn’t change

— D passes through to N1

When CLK = 1 L2 Q
— L2 is transparent leader follower
— L1 doesn’t change
— N1 passes through to Q
Thus, on the edge of the clock (when CLK rises from 0 —1)
— D passes through to Q

CLK

D Q

CLK

D Q

Hence, flip-flop is never transparent as a whole.

Sequential Networks — D Flip-Flop

e Inputs: CLK, D

e Function:

— Samples D on rising edge of CLK

e When CLK rises from Oto 1, D
passes through to Q

e Otherwise, Q holds its previous
value

— Q changes only on rising edge of CLK

e Called edge-triggered ¢k fjj

— Activated on the clock edge

D Flip-Flop
Symbols
| Y A clock that updates all
| memory elements (flip-
D Q- 4 L flops) at exactly the same
a- moment (the active clock

edge) allows us to design
circuits that compute a
next state from a current
state in a well-defined

manner!
Clock edges Can we also build a
positive edge triggered negative edge triggered
D Flip-Flop?

Sequential Networks — D Latch vs. D Flip-Flop

|
CLK

-D Q- D Q-
Q- Q-
D Latch D Flip-flop

CLK ? \
- [] /Z/ \7 é/
Qatch) | w (3

/4/
v

Registers: One or More Flip-flops

CLK

Easier to draw!

D;—|D | Q— Qs
CLK /
4

4
— +Q

D

3:0 3:0

4-bit Register

DD QG Two ways to draw a register

4-bit Register

Enabled Flip-Flops

° |npUtSZ CLK’ D’ EN It’.s useful when we
wish to load a new
— The enable input (EN) controls when new data (D) is stored value into a flip-flop
e F t only sometimes,
unction rather than on every
— EN = 1: D passes through to Q on the clock edge clock edge

— EN = 0: the flip-flop retains its previous state

Another way to

Internal implement it?
Circuit
CLK EN
EN CLK Symbol |
| | No, never put logic
10 in the clock. Spikes
D Q—Q -D QR 7 may occur and
D1 EN D—D aQQ cause unwanted
| state changes.

Resettable Flip-Flops

° |nput5; CLK, D, Reset It’s useful when we want to
force a known state (i.e., 0) into
e Function: all the flop-flops in a system

when we first turn it ON.

— Reset=1: Qis forcedto O
— Reset = 0: flip-flop behaves as ordinary D flip-flop

Symbols

Resettable Flip-Flops

P TWO types SynC. reset: L
— Synchronous: resets at the clock edge only clk: N
D:
— Asynchronous: resets immediately when Reset = 1 . -

e Asynchronously resettable flip-flop requires

Async. reset:

changing the internal circuitry of the flip-flop dk: -
e Synchronously resettable flip-flop: Zf . ~
Internal |
Circuit
CLK

D —
Reset —}D Q—Q

Settable Flip-Flops

e Inputs: CLK, D, Set

* Function:
— Set=1: Qissetto 1
— Set = 0: the flip-flop behaves as ordinary D flip-flop

Symbols

EE1D1: Digital Systems A

Finite State Machines (FSM)

Finite State Machine (FSM)

e FSM provides a systematic way to design synchronous
sequential circuits given a functional specification

e Consists of:

— State register
e Stores current state
e | 0ads next state at clock edge

— Combinational logic
e Computes the next state

e Computes the outputs

Why we call it Finite State Machine?

Moore and Mealy FSM

. Combinational 7
Flip-flops circuit

Combinational

circuit

Clock * Mealy machines can be smaller
than Moore machines for same
functionality (see next

example).
*W: primary inputs * However, their usage may
*Q: present (current) outputs of the flip-flops, i.e. state of circuit. cause problems: When using
*Z: outputs feedback loops over FSMs,
*Moore machine: outputs depend only on the state (flip-flops) of the circuit. combinational loops may occur
*Mealy machine: outputs depend on both the state (flip-flops) and the primary inputs without a register (instability!).

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

FSM: Basic Design Steps

1. State Diagram
2. State Table
3. State Assignment

4. Choice of Flip-Flops and Derivation of Next-State
and Output Expressions

S. Implementation of Next-State and Output Expressions
using Logic Gates

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

Design a synchronous FSM that has one input (w) and one output (z)
The output (z) must be equal 1 if during two subsequent clock cycles the input (w) was

equal 1. Otherwise, z must be 0.

Clockcycle: tp t3 tp t3 ty4 ts5 tg t7 tg +to fyp

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

e State Diagram * State Table

Present Next state Output
state | 0 w— | z
A A B 0
B A C 0
C A C 1

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

e State Table

Present Next state Output
state w =0 w = 1| Z - »
A A B 0 o o
s | Ao | o Continons contimion |
C A C 1
Y2
- +

« State-assigned table

Next state
Present

state w=0 w=1 | Output

yavi Y2 Y Yo Y N
Al 00 00 01 0 Clock
B| ol 00 10 0
C 10 00 10 1

. ad dd d Note: for next state variables we sometimes
d = don't care (X) also use the following notation: y,* y,*

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

Next state
Present

state w=0 w=1 | Output

yavi Y2 Yq Yo Y v

A 00 00 01 0

B 01 00 10 0

C 10 00 10]

I dd dd d

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

¥a¥
00 0l 11 10
oloflofda]o
1@ ofalo
Y2V
00 01 11 10
ololofa]o
~
1] o (D] @f(1)
Y1
0 1
ol o] o
7 ~
O] ¢

Yy = wyy2+w¥ 1y,

Using don’t cares

Yy = wyp+wy,
= Wiy +¥,)

4.=_1F"_|

Example: Sequence Detector using Moore Style

¥z

¥

YI = w7, :D
Va=wiy +y ,
2= [)
Q
I—'\ ¥
w : Q)
—
Q
T
Clock
Resetn

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

N W =

Next state

Present
state | w=0 w=1 | Output
Y2V 63 4 Yo Yy N
00 00 01 0
01 00 10 0
10 00 10]
11 dd dd d

Example: Sequence Detector using Moore Style

* Timing diagram

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Mealy Style

Meal Clock cycle: th 4 © BB 44 5 tt tv g t9 tyo
Y w. 0 1 0 1 1 0 1 1 1 0o 1
Machine
Z o 0 o o 1 o o0 1 1 o 0
Reset
L w=1/z=0 For a Mealy machine,

output values are given

w=0/z=0 ‘° e’ w=1/z=1 per state transition
instead of per state

(Moore).

Also note: now z can
become 1 in same clock

Present Next state Output z cycle as cycle where w is
1 for the second time.
state. | =0 w=1|w=0 w=1
A A B 0 0
B A B 0 1

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Mealy Style

Present Next state Output z
state. | =0 w=1|w=0 w=1 v b y
A A B 0) 0 Clock >
B A B 0) 1
Resetn
Present Next state Output o 1y h I3 by 15 le 17 I o Tio
l- l- Clock : J_
Sale =0 w=1|lw=0 w=1 0
i
y Y Y Z Z Yoo
i
Al o | o 1 | o o0 v oA AlBLAIB B]LAfB B B[LA
B I 0 1 0] 1
o

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

« Sequential networks
« Synchronous/asynchronous sequential systems
» Latches
 Flip-flops: Edge/level triggered

* Finite State Machines
 Finite State Diagram
» Design method to go from a problem to an FSM implementation

« Moore and Mealy Machines

To Do List

« Reading Material book "Digital Design”:
« Sections 3.1 — 3.3 (not 3.2.7)

« Assignments for this lecture:
» Gated Practice Assignment Lecture 6

Thank you

	Slide 1: Sequential Logic
	Slide 2: Learning Objectives
	Slide 3: Outline
	Slide 4: Sequential Networks
	Slide 5: Sequential Networks – Overview
	Slide 6: Sequential Networks –Bistable Circuit
	Slide 7: Bistable Circuit Analysis
	Slide 8: Sequential Networks – SR Latch Analysis
	Slide 9: Sequential Networks – R-S Latch Analysis
	Slide 10: Sequential Networks – R-S Latch Analysis
	Slide 11: NAND SR Latch
	Slide 12: Sequential Networks – SR (NOR) Latch Analysis
	Slide 13: Sequential Networks – D Latch
	Slide 14: Sequential Networks – D Latch Internal Circuit
	Slide 15: Sequential Networks – D Flip-Flop Internal Circuit
	Slide 16: Sequential Networks – D Flip-Flop
	Slide 17: Sequential Networks – D Latch vs. D Flip-Flop
	Slide 18: Registers: One or More Flip-flops
	Slide 19: Enabled Flip-Flops
	Slide 20: Resettable Flip-Flops
	Slide 21: Resettable Flip-Flops
	Slide 22: Settable Flip-Flops
	Slide 23: Finite State Machines (FSM)
	Slide 24: Finite State Machine (FSM)
	Slide 25: Moore and Mealy FSM
	Slide 26: FSM: Basic Design Steps
	Slide 27: Example: Sequence Detector using Moore Style
	Slide 28: Example: Sequence Detector using Moore Style
	Slide 29: Example: Sequence Detector using Moore Style
	Slide 30: Example: Sequence Detector using Moore Style
	Slide 31: Example: Sequence Detector using Moore Style
	Slide 32: Example: Sequence Detector using Moore Style
	Slide 33: Example: Sequence Detector using Mealy Style
	Slide 34: Example: Sequence Detector using Mealy Style
	Slide 35: Summary
	Slide 36: To Do List
	Slide 37

