
EE1D1: Digital Systems A
BSc. EE, year 1, 2021-2022, lecture 5

Sequential Logic

Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science

EE1D1: Digital Systems A
BSc. EE, year 1, 2025-2026, lecture 6

Learning Objectives

As student you should be able to:

• Explain how sequential networks work

• Interpret circuits with memory elements (i.e., latches, flip-flops)

• Explain Finite State Machines

• Design Finite State Machines (Moore and Mealy type)

2

Outline

Sequential Networks

• Overview

• Bistable circuit

• Latches

• Flip-flops

Finite State Machines

• State Machine Concept

• Finite State Diagram

• Building a Finite State Machine from flip-flops and gates

• Moore Machine example

• Mealy Machine example

Summary

3

EE1D1: Digital Systems A

Sequential Networks

4

Sequential Networks – Overview

5S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

• In previous lectures we considered combinational circuits:
• The value of each output depends solely on the inputs.

• Here we introduce sequential circuits:
• The outputs depend on the inputs and on the past behavior of the circuit.
• Such circuits include storage elements that store the values of logic signals.
• The contents of the storage elements are said to represent the state of the circuit.

Motivation

• Once the alarm is triggered by the sensor, it must remain active even if the sensor
output goes back to zero.

• The alarm is turned off manually by means of a Reset input.
• The circuit requires a memory element to remember

that the alarm has to be active until the Reset signal arrives.

Sequential Networks –Bistable Circuit

6

QQ
Q

Q

I1

I2

I2 I1

• Fundamental building block of other state elements

• Two outputs: Q, Q

• No inputs

Back-to-back inverters Cross-coupled inverters

Same circuit!

Bistable Circuit Analysis

7

Q

Q

I1

I2

0

1

1

0

Q

Q

I1

I2

1

0

0

1

• Consider the two possible cases:

– Q = 0:

then Q = 1, Q = 0 (consistent)

– Q = 1:

then Q = 0, Q = 1 (consistent)

• Stores 1 bit of state in the state variable, Q (or Q)

Stable

Stable
0 1 0

A B C

What happens with
an odd number of
inverters?

-> 1 -> 1-> 0

oscillation!

-> 0

Sequential Networks – SR Latch Analysis

8

R

S

Q

Q

N1

N2

• SR Latch

• Consider the four possible cases:
– S = 1, R = 0

– S = 0, R = 1

– S = 0, R = 0

– S = 1, R = 1

Sequential Networks – R-S Latch Analysis

9

– S = 1, R = 0:

then Q = 1 and Q = 0

Set the output

– S = 0, R = 1:

then Q = 0 and Q = 1

Reset the output

R

S

Q

Q

N1

N2

0

1

1

0
1

0

R

S

Q

Q

N1

N2

1

0

0

1
0

1

Sequential Networks – R-S Latch Analysis

10

R

S

Q

Q

N1

N2

0
R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1

1
0

1

1

0
1

0

0

– S = 0, R = 0:

then Q = Qprev

Memory!

R

S

Q

Q

N1

N2

1

1

0

0
0

0

Truth Table

Stable

Q

Q

I1

I2

0

1

1

0

similar to:

0/1

0/1

1/0

1/0

– S = 1, R = 1:

then Q = 0, Q = 0

Invalid State

Q ≠ NOT Q
invalid/
forbidden

NAND SR Latch

11

Circuit

hold
reset
set
invalid

S

R

Q

Q

Truth Table

1
1
0
0

1
0
1
0 1 1 1 1

1/1/0/0

1/0/1/0

Qprev/1/0/1

Qprev/0/1/1

0 0
0 1 1 0

0 11 0

Sequential Networks – SR (NOR) Latch Analysis

12

S

R Q

Q

SR Latch

Symbol

• SR stands for Set/Reset Latch

– Stores one bit of state (Q)

• Control what value is being stored with S, R inputs
– Set: Make the output 1

S = 1, R = 0, Q = 1

– Reset: Make the output 0

S = 0, R = 1, Q = 0

– Memory: Retain value

S = 0, R = 0, Q = Qprev

• Must do something to avoid invalid state (when S = R = 1)

Sequential Networks – D Latch

13

D Latch

Symbol

CLK

D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes

– D (the data input): controls what the output changes to

• Function
– When CLK = 1,

D passes through to Q (transparent)

– When CLK = 0,

Q holds its previous value (memory)

• Avoids invalid case when

Q ≠ NOT Q

Sequential Networks – D Latch Internal Circuit

14

S

R Q

Q

Q

Q
D

CLK
D

R

S

CLK

D Q

Q

S R Q

0 0 Q
prev

0 1 0

1 0 1

Q

1

0

CLK D

0 X

1 0

1 1

D

X

1

0

Q
prev

There is still a limitation:

CLK

D Q

Q 1->0->...0->1->...

Level-sensitive latches are transparent when clk is
active. This gives problems when feedback is used.

Sequential Networks – D Flip-Flop Internal Circuit

15

CLK

D Q

Q

CLK

D Q

Q

Q

Q

D
N1

CLK

L1 L2

• Two back-to-back D latches (L1 and L2) controlled by
complementary clocks

• When CLK = 0
– L1 is transparent

– L2 doesn’t change

– D passes through to N1

• When CLK = 1

– L2 is transparent

– L1 doesn’t change

– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0 1)
⎯ D passes through to Q

• Hence, flip-flop is never transparent as a whole.

leader follower

Sequential Networks – D Flip-Flop

16

D Flip-Flop

Symbols

D Q

Q

• Inputs: CLK, D

• Function:
– Samples D on rising edge of CLK

• When CLK rises from 0 to 1, D
passes through to Q

• Otherwise, Q holds its previous
value

– Q changes only on rising edge of CLK

• Called edge-triggered
– Activated on the clock edge Clock edges

CLK

positive edge triggered

Can we also build a
negative edge triggered
D Flip-Flop?

A clock that updates all
memory elements (flip-
flops) at exactly the same
moment (the active clock
edge) allows us to design
circuits that compute a
next state from a current
state in a well-defined
manner!

Sequential Networks – D Latch vs. D Flip-Flop

17

CLK

D

Q (latch)

Q (flop)

CLK

D Q

Q

D Q

Q

D Latch D Flip-flop

CLK

D

Q (latch)

Q (flop)

Registers: One or More Flip-flops

18

CLK

D Q

D Q

D Q

D Q

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D
3:0

4 4

CLK

Q
3:0

4-bit Register

4-bit Register

Easier to draw!

18

Two ways to draw a register

Enabled Flip-Flops

19

Internal

Circuit

D Q

CLKEN

D
Q

0

1
D Q

EN

Symbol

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1: D passes through to Q on the clock edge

– EN = 0: the flip-flop retains its previous state

Another way to
implement it?

It’s useful when we
wish to load a new
value into a flip-flop
only sometimes,
rather than on every
clock edge

No, never put logic
in the clock. Spikes
may occur and
cause unwanted
state changes.

Resettable Flip-Flops

20

Symbols

D Q

Reset
r

• Inputs: CLK, D, Reset

• Function:
– Reset = 1: Q is forced to 0

– Reset = 0: flip-flop behaves as ordinary D flip-flop

It’s useful when we want to
force a known state (i.e., 0) into
all the flop-flops in a system
when we first turn it ON.

Resettable Flip-Flops

21

• Two types:

– Synchronous: resets at the clock edge only

– Asynchronous: resets immediately when Reset = 1

• Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

• Synchronously resettable flip-flop:

Internal

Circuit

D Q

CLK

D
Q

Reset

Sync. reset:

clk:

Async. reset:

clk:

Settable Flip-Flops

22

Symbols

D Q

Set
s

• Inputs: CLK, D, Set

• Function:
– Set = 1: Q is set to 1

– Set = 0: the flip-flop behaves as ordinary D flip-flop

EE1D1: Digital Systems A

Finite State Machines (FSM)

23

24

• FSM provides a systematic way to design synchronous
sequential circuits given a functional specification

• Consists of:

– State register
• Stores current state

• Loads next state at clock edge

– Combinational logic
• Computes the next state

• Computes the outputs

Finite State Machine (FSM)

Why we call it Finite State Machine?

Moore and Mealy FSM

25

•W: primary inputs
•Q: present (current) outputs of the flip-flops, i.e. state of circuit.
•Z: outputs

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

•Moore machine: outputs depend only on the state (flip-flops) of the circuit.

•Mealy machine: outputs depend on both the state (flip-flops) and the primary inputs

• Mealy machines can be smaller
than Moore machines for same
functionality (see next
example).

• However, their usage may
cause problems: When using
feedback loops over FSMs,
combinational loops may occur
without a register (instability!).

FSM: Basic Design Steps

26

1. State Diagram

2. State Table

3. State Assignment

4. Choice of Flip-Flops and Derivation of Next-State

and Output Expressions

5. Implementation of Next-State and Output Expressions

using Logic Gates

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

27

Design a synchronous FSM that has one input (w) and one output (z)
The output (z) must be equal 1 if during two subsequent clock cycles the input (w) was
equal 1. Otherwise, z must be 0.

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

0

Example: Sequence Detector using Moore Style

28

• State Diagram • State Table

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

29

• State-assigned table

d = don’t care (X)

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

• State Table

Note: for next state variables we sometimes
also use the following notation: y2

+ y1
+

Example: Sequence Detector using Moore Style

30S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

31S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Moore Style

32

• Timing diagram

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

A A AA ABB BC C C BA

Example: Sequence Detector using Mealy Style

33

Mealy
Machine

Clock cycle: t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10

w : 0 1 0 1 1 0 1 1 1 0 1

z : 0 0 0 0 1 0 0 1 1 0 0

A

w 0 = z 0 = 

w 1 = z 1 = B w 0 = z 0 = 

Reset

w 1 = z 0 = 

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0
B A B 0 1

For a Mealy machine,
output values are given
per state transition
instead of per state
(Moore).

Also note: now z can
become 1 in same clock
cycle as cycle where w is
1 for the second time.

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

Example: Sequence Detector using Mealy Style

34

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0
B A B 0 1

S. Brown & V. Zvonko, Fundamentals of digital Logic with Verilog design.

A BA A AB B B B B A

Summary

• Sequential networks

• Synchronous/asynchronous sequential systems

• Latches

• Flip-flops: Edge/level triggered

• Finite State Machines

• Finite State Diagram

• Design method to go from a problem to an FSM implementation

• Moore and Mealy Machines

35

To Do List

• Reading Material book “Digital Design”:

• Sections 3.1 – 3.3 (not 3.2.7)

• Assignments for this lecture:

• Gated Practice Assignment Lecture 6

36

Thank you

37

	Slide 1: Sequential Logic
	Slide 2: Learning Objectives
	Slide 3: Outline
	Slide 4: Sequential Networks
	Slide 5: Sequential Networks – Overview
	Slide 6: Sequential Networks –Bistable Circuit
	Slide 7: Bistable Circuit Analysis
	Slide 8: Sequential Networks – SR Latch Analysis
	Slide 9: Sequential Networks – R-S Latch Analysis
	Slide 10: Sequential Networks – R-S Latch Analysis
	Slide 11: NAND SR Latch
	Slide 12: Sequential Networks – SR (NOR) Latch Analysis
	Slide 13: Sequential Networks – D Latch
	Slide 14: Sequential Networks – D Latch Internal Circuit
	Slide 15: Sequential Networks – D Flip-Flop Internal Circuit
	Slide 16: Sequential Networks – D Flip-Flop
	Slide 17: Sequential Networks – D Latch vs. D Flip-Flop
	Slide 18: Registers: One or More Flip-flops
	Slide 19: Enabled Flip-Flops
	Slide 20: Resettable Flip-Flops
	Slide 21: Resettable Flip-Flops
	Slide 22: Settable Flip-Flops
	Slide 23: Finite State Machines (FSM)
	Slide 24: Finite State Machine (FSM)
	Slide 25: Moore and Mealy FSM
	Slide 26: FSM: Basic Design Steps
	Slide 27: Example: Sequence Detector using Moore Style
	Slide 28: Example: Sequence Detector using Moore Style
	Slide 29: Example: Sequence Detector using Moore Style
	Slide 30: Example: Sequence Detector using Moore Style
	Slide 31: Example: Sequence Detector using Moore Style
	Slide 32: Example: Sequence Detector using Moore Style
	Slide 33: Example: Sequence Detector using Mealy Style
	Slide 34: Example: Sequence Detector using Mealy Style
	Slide 35: Summary
	Slide 36: To Do List
	Slide 37

