EE1D1: Digital Systems A

BSc. EE, year 1, 2025-2026, lecture 7

Sequential Logic

Computer Engineering Lab
Faculty of Electrical Engineering, Mathematics & Computer Science

]
TUDelft

 FSM Examples
« Traffic light controller
 Candy dispenser
« Moore vs Mealy: snail crawler

 FSM Assignment Courselab
 State Table + Karnaugh Maps
 NAND Gate Implementation

NOR Gate Implementation

AOI and OAI Gate Implementation

Circuit Diagram

Simulation

FSM Example: Traffic Light Controller

* Traffic light controller at a busy intersection on campus
— Traffic sensors: T,, T (TRUE when there’s traffic)
— Traffic Lights: L,, L (Three possible colors Green, and Red)

Dining
Hall

r
>
e
Q opeAelg
LeeD
—sD) —
— w
>

Labs

prg QD
)

wl_

o

S

3

w

Fields

S. Harris & D. Harris, Digital Design and Computer Architecture

FSM Black Box and Finite-State Diagram

e Inputs: CLK, Reset, T,, T,
e Outputs: L,, L,

S1
L ,: yellow

e CLK period is 5 seconds 1 - red

Cll_K

Ta Traffic —+— L,
Light
Ts Controller —+— Lg

Reset

S. Harris & D. Harris, Digital Design and Computer Architecture

FSM State Transition Table

Current State Next State

SO 0 X S1
SO 1 X SO
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X SO

S : Current State
S’ Next State

S. Harris & D. Harris, Digital Design and Computer Architecture

FSM Encoded State Transition Table

Current State Next State

S0 00 0 0 1 X 0 0
S1 01 0 1 X X 1 0
52 10 1 0 X 0 1 1
>3 11 1 0 X 1 1 0

1 1 X X 0 0

S = 5‘150 + 51§o7TB + S1§0TB :§150 + 51§o =5,® 5

S0=55T,+ Sl§()7TB

S. Harris & D. Harris, Digital Design and Computer Architecture

FSM Output Table

L,: green
Ly red

L,: yellow
Ly red

0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1 T,
Output Encoding
Ly =54
— green 00
Lao = 5150
EXS vellow 01
Lgo = 5150 red 10

S. Harris & D. Harris, Digital Design and Computer Architecture

Next State Current State
Cll_K L

Dy

|
Ts 83 Reset
Si1| [So Lo
?
. . Output Logic
Next State Logic State Register
§$1=5,® S, Ly =54
S' =5,5.T, +5.5,T Lao = 5150
Lg =5
Lgo =515

S. Harris & D. Harris, Digital Design and Computer Architecture

Dorr

Ave.

()] n
£ _ < §e)
m nla LB L B nlu
L
Bravado . ‘ Blvd.
) V@
I
©
=
o| 38
S|
&S -
<
o
(O}
<

“““““““““““““ BN 5 =3 I N O O A I
0 N
< <
o) wn
o
3)
“““““““““““““ U N P~ A I
= S =) N
o gl |z 2
m o| |2 |8
KN
\\\\\\\\\\\\\\\\\\\\\\\\\\ \\‘w\\\\MVﬂw«w\\\\\ B m
[e0] ~ = =
o) QT 2
O 7)) ™)
S x| >
© ST T AN o
\\\\\\\\\\\\\\\\\\\\\\\\\\ A NI R R A D A <o
™~ ™
o wn
o
S a0 S
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Ll _L__L_ — _ m/\\\\\ | o u
~ == ™ +
© Sl =] |= i
2 NEEIRE: £
= wl &) o <
S & 5
—_~ /
“““““““““““““““ el =l Al L g <
0 N S g [
o I =
S |0 (2 =
| o
= ° SE=t.h S £
““““““““““““““““ 1/0\\“\“““““ T T B 2 O
((v) 2 % O
o wn
— S L 2
O ol s
“““““““““““““““ --t--t--b-t--1--1---- F R c
© o 8
o n
@)
\\\\\\\\\\\\\\\\\\\\\ Sl Lo ©
AR +
2 » —
()] % .
C —
(]) el 18] || |2 oA
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ot--t=t--&|--1=4---- | v [
(0] o | -
m o I % @l s & ©
T S - \Wf/WA WA
S SRS
\\\\\\\\\\\\\\\\\ R 5 S =
M = DI — - NS e p -
7)) - R S
I
F wnv

FSM — Example: Candy Dispenser

Problem definition: return gum after at least 15 cents has been inserted, using dimes (10 cent) and nickels (5 cent).
No change is returned.
N
. |
S?r)llsnor D Vendi_ng Open Gum

Step 1: Block scheme: ——>| Machine ———> Release

Reset FSM Mechanism } I

Step 3: Simplification:

Coin sensor: N=1 or D=1 during Clk A
1 clock period after coin insertion

Step 2: State diagram:

States: 0, N, NN, NNN, D, DN, ND, ...
Inputs: N(ickel), D(ime), Reset
Output: open

D
< Optimize: Re-use states when possible [open]
(S2 =S53,54 =55 = ... =58)

FSM — Example: Candy Dispenser

Step 3: Simplification:

[open]

Step 4: State encoding:

Step 5: State table:

Current Inputs Next Output
State Q;, Q; D N State D, D, Open
O¢ 0 O 0O O O¢ 0 O 0
0 1 5¢ 0 1 0
1 0 10¢ 1 0 0
1 1 X X X X
5¢ 0 1 0 O 5¢ 0 1 0
0 1 10¢ 1 0 0
1 0 15¢ 1 1 0
1 1 X X X X
10¢ 1 O 0 O 10¢ 1 0 0
0 1 15¢ 1 1 0
1 0 15¢ 1 1 0
1 1 X X X X
15¢ 1 1 0 o0 15¢ 1 1 1
0 1 15¢ 1 1 1
1 0 15¢ 1 1 1
1 1 X X X X

FSM — Example: Candy dispenser

Step 6: Implementation:

Q1 Qo % Q1 Qo % Q1 Qo %
DN\ 00 01 11 10 DN\ 00 01 11 10 DN\ 00 01 11 10

00l O 0 1 1 00l O 1 1 0 00|l O 0 1 0

011 O 1 1 1 01 1 0 1 1 01] O 0 1 0

N N N

1M1 x X X X 1] x X X X 1M1 x X X X
D D D

10| 1 1 1 1 101 O | 1 1 1 101 O 0 1 0

I 1 I 1 ——————
K-map for D4 Qo K-map for Dy Qo K-map for OPEN Qo

, , Qo —
Do=NQy +QN + QN +Q;D NS Do [0 ol
Q1— ‘
OPEN = Ql QO N — 1 CLK

K o ¢ ap—
\r%é'_r_

D;=Q;+D+ QN Q?:j— :DQF’EN
B,

FSM — Question

Given the adjacent state diagram for an FSM with 1 input and 1 output.
Which input sequence (input value per clock period, last input value on the right) will give a 1 at the end?

0011
0111
1100
1110

oo oo

From B to D when input is 1
From D to A when input is 1
From A to C when input is 1
From C to D when input is 0
=> answer d

Moore vs. Mealy FSM

Alyssa P. Hacker has a snail that crawls down a paper tape with
1’s and O’s on it. The snail smiles whenever the last two digits it

has crawled over are 01. Design Moore and Mealy FSMs of the
snail’s brain.

S. Harris & D. Harris, Digital Design and Computer Architecture

State Transition Diagrams

Moore FSM

Mealy FSM

Reset
0/0

wo“i’ ‘EI’

S. Harris & D. Harris, Digital Design and Computer Architecture

Moore FSM State Transition Table

Moore FSM

Current
State Inputs Next State
A s, S
0 0 0 0 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0

S. Harris & D. Harris, Digital Design and Computer Architecture

State Encoding
SO 00

51 01
S2 10
S, =SA

S =A

Using don’t care conditions
Not shown in the table

Moore FSM Output Table

Moore FSM
0 State Encoding

SO 00
S1 01
S2 10
Current State Output
Y Y
0 0
0
0 1

S. Harris & D. Harris, Digital Design and Computer Architecture

Mealy State Transition & Output Table

Current Next
State Input State Output .
5 ; Yp State Encoding

0 0 1 0 SO 0
0 1 0 0 S1 1
1 0 1 0
1 1 0 1 A
So =
Reset Y= SOA

. Harris & D. Harris, Digital Design and Computer Architecture

Moore FSM Schematic

Next State Equations
S1 = SoA A CLK
SO’ - /4_ |

Output Equation
Y=35;

S. Harris & D. Harris, Digital Design and Computer Architecture

Mealy FSM Schematic

Next State Equation
SO’ - /4_

Output Equation

Y =5 >0 SoMS])y

S. Harris & D. Harris, Digital Design and Computer Architecture

Moore and Mealy Timing Diagram

' Cycle1 | Cycle2 | Cycle3 | Cycle4 | Cycle5 | Cycle6 | Cycle7 | Cycle 8 | Cycle 9 | Cycle 10! Cycle 11

CK/ N\ N\

Reset%
AT Ao T e AT
—————————————————— Moore Maghine —————————
S 77 XS0 | DGR G G (82 XS0 XSt XSz XS0
3 3 3 r\ | ‘ : | : : |
i~ i i /) Y Y
\' Mealy Machine — ; ;
S 77 XS0 AST XS0 XSt ASO_ AS1 XSO
Yi i Ol
Moore FSM Mealy FSM

Mealy FSM: asserts Y immediately

when input pattern 01 is detected
110 w Moore FSM: asserts Y one cycle after

input pattern 01 is detected

S. Harris & D. Harris, Digital Design and Computer Architecture

FSM Assignment similar to Courselab Assignment 3B

Given the following state diagram of a Moore machine called "system":

%=0 /\/ eset Herein, the five states are coded as follows:
State Encoding output

clk 9 y2 2! y0 z
— FSM z_, A 0 0 0 1
— B 1 1 1 0
X C 0 1 0 1
D 1 0 1 1
E 1 0 0 0

with state A as the initial state.

The inputs of the systems are x € {0,1}, reset € {0,1}and clk € {0,1}.

The current state of the system is described by Y = (y2,y1,y0) with yi € {0,1}
The output of the system is described by z € {0,1}.

The functionality of the system is as follows. If reset = 1, the system returns
to the initial state "A". If reset = 0, the system operates according to input x
Assignment: and synchronously on the rising clock edge.

1. Write SystemVerilog description that models the system described above, using only D-
flipflops and the gates mentioned at point 2.

2. Implement z using only NOR-gates, y2 using NAND gates, y1 using an AOI gate, and y0
using an OAI gate. All NAND and NOR gates must have 2 or 4 inputs.

3. Write a test bench that verifies your own SystemVerilog model by starting with a reset and
then going through all state transitions at least once. (Don't forget the clock signal clk).

State Table + Kargaugh Maps

FSM example assignment

State Table
Current state input Next state output
Symbol y2 yl y0 X Symbol y2+ y1+ yO+ z Clk
A 0 0 0 0 —> Z
0 0 0 1 ESM ———————>
X 0 0 1 0 —
0 0 1 1 X
C 0 1 0 0
0 1 0 1
B 0 1 1 0 State Encoding output
0 1 1 1 y2 yl y0 z
E 1 0 0 0 A 0 0 0 1
1 0 0 1 B 1 1 1 0
D 1 0 1 0 C 0 1 0 1
1 0 1 1 D 1 0 1 1
X 1 1 0 0 E 1 0 0 0
1 1 0 1
X 1 1 1 0
1 1 1 1
Karnaugh Maps
y2+ [1] yl+ [2] yo+ [3] z [4]

Inverted Karnaugh Maps
y2+ [5] y1+ (6] yo+' [7] Z' [8]

NAND Gate Implementation

 Derive sum-of-products to find NAND implementation

A
B — | Z

:D~ AB+CD
C _Ji

A__|
B—) _c}_z (AB+CD)”

((AB)" » (CD)')’

NOR Gate Implementation

« Derive product-of-sums to find NOR implementation

(A+B)(C+D)

((A+B)(C+D))” =
((A+B)" + (C+D)")’

AOI Gate Implementation

 Derive sum-of-products for inverted output to find AOI implementation

‘F=Z m(2,4,6,7)I of[T]J] oo | oO

-~ F =2, m0,1,3,5)

AB A
c\. 00 01711 10'

/ 1

[T o [

1 B

2x2 AOI Schematic

Symbol

F=A'B+AC+B'C

l

l

OAI Gate Implementation

 Derive product-of-sums for inverted output to find OAI implementation

2 Z
ID

2x2 OAI Schematic

—~ F =11 M(2,4,6,7) 0| 1 |Lo []o[][O
1l 1] 1]lo]f 1
| |
B

F=(A+B)A+C)(B'"+C)

Symbol

Om O »® »

Circuit Diagram

clk

o
o

CLK

y2+=((y2y1') (y2'y1) ' (yOx)")'
yl+' =x'+y2yl
yo+' = (y1' + x')(y2' + x')(y1 + y0')
D 72 2= ((y2' +y0)'+(yl'+ y0')")
CLK
A
D
Al
CLK [:))o
A
Z
yO

SystemVerilog Implementation

» Library with components containing AOI gates etc.
* Need to create port maps to implement the circuit

* You start with a file where you only have to add the port maps
and signal declarations

Circuit Diagram (with Signal nhames)

Do CLK

clk

Test Bench Results

State Encoding output
y2 yl yO0 4
A 0 0 0 1
B 1 1 1 0
C 0 1 0 1
D 1 0 1 1
E 1 0 0 0

£ [fsm_assignment_tb/testebench/dk

£ [fsm_assignment._th/testebenchjrst

£ [fsm_assignment_tb/testebench/x

. [fsm_assignment_tb/testebench/z

& /fsm_assignment_tb/testebench/Y [000 1010 100 1111 1101 (111 J000 o010 [1it 000

< (2)=/fsm_assignment_tb/testebench/y2

“ (1)=/fsm_assignment_tb/testebenchfy1

(0)=/fsm_assignment_tb/testebench/y0

 Design Finite State Machines for traffic light and candy dispenser.
« Moore vs. Mealy machine

« FSM Assignment Courselab

To Do List

« Reading Material book "Digital Design”:
« Section 3.4

« Assignments for this lecture:
» Gated Practice Assignment Lecture 7

Thank you

	Slide 1: Sequential Logic
	Slide 2: Outline
	Slide 3: FSM Example: Traffic Light Controller
	Slide 4: FSM Black Box and Finite-State Diagram
	Slide 5: FSM State Transition Table
	Slide 6: FSM Encoded State Transition Table
	Slide 7: FSM Output Table
	Slide 8: FSM Schematic
	Slide 9: FSM Timing Diagram
	Slide 10: FSM – Example: Candy Dispenser
	Slide 11: FSM – Example: Candy Dispenser
	Slide 12: FSM – Example: Candy dispenser
	Slide 13: FSM – Question
	Slide 14: Moore vs. Mealy FSM
	Slide 15: State Transition Diagrams
	Slide 16: Moore FSM State Transition Table
	Slide 17: Moore FSM Output Table
	Slide 18: Mealy State Transition & Output Table
	Slide 19: Moore FSM Schematic
	Slide 20: Mealy FSM Schematic
	Slide 21: Moore and Mealy Timing Diagram
	Slide 22: FSM Assignment similar to Courselab Assignment 3B
	Slide 23: State Table + Kargaugh Maps
	Slide 24: NAND Gate Implementation
	Slide 25: NOR Gate Implementation
	Slide 26: AOI Gate Implementation
	Slide 27: OAI Gate Implementation
	Slide 28: Circuit Diagram
	Slide 29: SystemVerilog Implementation
	Slide 30: Circuit Diagram (with Signal names)
	Slide 31: Test Bench Results
	Slide 32: Summary
	Slide 33: To Do List
	Slide 34

