
EE1D1: Digital Systems A
BSc. EE, year 1, 2021-2022, lecture 5 

SystemVerilog Sequential Circuits

Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science

EE1D1: Digital Systems A
BSc. EE, year 1, 2025-2026, lecture 8

Some figures and text
© 2021 Sarah Harris and David Harris



Recap

2

Digital Systems

Boolean Circuits

Intro SystemVerilog

Introduction

Lecture 2

Lecture 3

Logic Minimization

Lecture 4

Combinational Modules, 
Implementation Technology 
and Floating Point Numbers

Lecture 5

Sequential Logic

Lectures 6-7

SystemVerilog Sequential

Sequential Modules

Lecture 9

Lecture 8



Learning Objectives

As student you should be able to:

• Describe latches and flip-flops in SystemVerilog.

• Use the always statement in SystemVerilog to 
describe sequential circuits and combinational circuits.

• Describe Finite-State Machines in SystemVerilog.

• Describe counters in SystemVerilog.

• Simulate a sequential circuit in SystemVerilog.

3



Overview

• Recap

• D Flip-flop and Latch

• The Always Statement

• Finite State Machines

• Counters

Sections in book DDCA: 4.4 – 4.6

4



Learned earlier

5

module func1(input  logic a, b, c,

output logic y);

logic n;

assign #1 y = n | c;

assign #1 n = a & b;   

endmodule

a

b

n

c
y

module testfunc1();

logic a, b, c, y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

->0(0)

->1(0)

->0(0)

->0(1)

->0(2)

->1(10) ->1(11)

->1(12)

Order is not 
important

Within this initial block, order is important.
Starting from begin, statements are executed 
one after another (with specified delays)

Simulation with testbench

x

x

x

x

x



Sequential Logic

6

• SystemVerilog uses idioms to describe latches, flip-flops 
and FSMs

• Other coding styles may simulate correctly but produce 
incorrect hardware after synthesis

• So, you should follow the recommended methods to obtain 
reliable simulation results as well as good synthesis results.

• Always keep in mind that – although you may be using a 
high-level description - you are describing hardware: 
registers (flip-flops) and combinational logic, orchestrated 
by the clock.



EE1D1: Digital Systems A

7

D flip-flop and 
latch



Describing a D flip-flop

8

module dff(input  logic clk, 

input  logic d, 

output logic q);

always_ff @(posedge clk)  // on a rising clock edge

q <= d;                // q gets the value of d

endmodule

d q

clk

D

FF

@( .... ) is the sensitivity list. 
It describes what triggers the
execution of the always 
statement. 



Describing a D flip-flop with reset

9

always_ff @(posedge clk)

if (reset) q <= 0; 

else q <= d; 

always_ff @(posedge clk, posedge reset) 

if (reset) q <= 0; 

else q <= d; 

synchronous reset => reset on 
rising clock edge

asynchronous reset => reset at any 
moment reset becomes 1

It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 



Registers

10

module register4bit(input  logic       clk,

input  logic       reset, 

input  logic       en, 

input  logic [3:0] d, 

output logic [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if      (reset) q <= 4'b0;

else if (en)    q <= d;

endmodule

Synthesis:

The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.



Describing a latch

11

always_latch

if (clk) q <= d;   // when clk = 1, q gets value of d

// when clk = 0, q remembers its value

d q

clk

D

latch

A sensitivity list is not allowed; the always_latch statement is evaluated 
whenever one of the inputs (clk or d) changes value.

Normally, it is not a good idea to use latches in your circuit.  They are transparent as 
long as clk = 1, so problematic combinational feedback loops may occur.  Also, timing 
of input signals is more difficult to control.

The always_latch statement is used to describe a latch



EE1D1: Digital Systems A

12

The Always 
Statement



Using always statement to describe a combinational circuit

13

always_comb

begin

p = a ^ b;

q = a & b;

s = p ^ cin;

cout = q | (p & cin);

end

An always_comb statement can be used to describe a combinational circuit. 

A sensitivity list is not allowed with always_comb; the block will be evaluated 
whenever one of the inputs (a, b and cin) change.

pa
b

cin

cout

s

q

It is important that you specify the value of all outputs in all cases.  
Otherwise, unwanted latches may be created during synthesis.

always_comb

if (s) y = x1;

else y = x0; 

always_comb

if (s) y = x1;

ok not ok



Using the always statement

14

always

A general always statement can also be used.

When it has no sensitivity list, the statement is evaluated whenever one of the inputs 
change:

When it has a sensitivity list, the statement is evaluated whenever one of the 
signals in the sensitivity list changes value:

always @(a, b, cin)

where signal names in the sensitivity list may be preceded by posedge or negedge to 
indicate that evaluation is triggered by only a rising edge or falling edge event.

For flip-flops (registers), latches and combinational circuits, the usage of respectively 
always_ff, always_latch and always_comb is preferred. 
The use of always should be restricted to testbenches.



Case Statement

15

module sevenseg(input logic [3:0] data, 

output logic [6:0] segments); 

always_comb

case(data) 

//                     abc_defg

0:       segments = 7'b111_1110; 

1:       segments = 7'b011_0000; 

2:       segments = 7'b110_1101; 

3:       segments = 7'b111_1001; 

4:       segments = 7'b011_0011; 

5:       segments = 7'b101_1011; 

6:       segments = 7'b101_1111; 

7:       segments = 7'b111_0000; 

8:       segments = 7'b111_1111; 

9:       segments = 7'b111_0011; 

default: segments = 7'b000_0000; 

endcase

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement

Synthesis:

Without default, outputs are not specified for all cases 
and latches will be inferred during synthesis!



If Statement

16

module priorityckt(input logic [3:0] a,

output logic [3:0] y); 

always_comb

if      (a[3]) y = 4'b1000; 

else if (a[2]) y = 4'b0100; 

else if (a[1]) y = 4'b0010; 

else if (a[0]) y = 4'b0001; 

else           y = 4'b0000;

endmodule

A priority circuit that uses a nested if-else statement

Synthesis:



Truth Tables with Don’t Cares

17

Synthesis:

• Truth tables may include don’t cares to allow more logic simplification. 
• The following shows how to describe the previous priority circuit with the inside keyword, 

which allows don’t cares to be used.

module priority_case_dc(input  logic [3:0] a, 

output logic [3:0] y);

always_comb

case(a) inside          // ? = don’t care

4'b1???: y = 4'b1000; // casez(a), as used in book,

4'b01??: y = 4'b0100; // is obsolete

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

endmodule



Blocking vs. Nonblocking Assignment

18

In an always statement, there is an important difference between using <= or = in an assignment.

• <= is a nonblocking assignment:  The signal on the left receives the value only after the block has been 
evaluated. So, the assignments are deferred.

• = is a blocking assignment. The signal on the left receives the value immediately after the assignment. 
The execution of a subsequent statement is “blocked” until this has been done.  So, the assignments 
are immediate, and the order is important.

always_ff @(posedge clk)

begin

n1 <= d;  // nonblocking (deferred)

q  <= n1; // nonblocking (deferred)

end

always_ff @(posedge clk)

begin

n1 = d;  // blocking (immediate)

q  = n1; // blocking (immediate)

end

Suppose that initially d = 1, n1 = 0 and q = 0

Then, after 1 rising clock edge:

n1 = 1  and q = 0 n1 = 1 and q = 1

And after a second rising clock edge:

n1 = 1  and q = 1 n1 = 1 and q = 1

not different 
from using q = d



Blocking vs. Nonblocking Assignment

19

// Good synchronizer using 

// nonblocking assignments

module syncgood(input  logic clk,

input  logic d,

output logic q);

logic n1;

always_ff @(posedge clk)

begin

n1 <= d;  // nonblocking

q  <= n1; // nonblocking

end

endmodule

// Bad synchronizer using 

// blocking assignments

module syncbad(input logic  clk,

input  logic d,

output logic q);

logic n1;

always_ff @(posedge clk)

begin

n1 = d;  // blocking

q  = n1; // blocking

end

endmodule

The different behavior also results in a different synthesis results.
(BTW: A synchronizer uses 2 D flip-flops in series to synchronize external inputs with clock.)



Blocking vs. Nonblocking Assignment

For always_comb blocks it is ok to use blocking assignments:

20

always_comb

begin

p = a ^ b;

q = a & b;

s = p ^ cin;

cout = q | (p & cin);

end

pa
b

cin

cout

s

q



Summary of rules for Signal Assignment

21

• Synchronous sequential logic: use always_ff @(posedge clk) and 
nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments (assign…)

assign y = a & b; 

• More complex combinational logic: use always_comb and blocking assignments (=)

• In an always_comb block, assign a value to each output for all input combinations. 

• Assign a signal in only one always statement or continuous assignment statement.



EE1D1: Digital Systems A

22

Finite State 
Machines



Finite State Machines

23

• Three blocks:
– next state logic

– state register

– output logic

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

state register

clk

clk



FSM Example 1: Divide by 3

24

The arrow indicates the reset state

Sometimes also a double circle is used: 

S2
0

S1
0

S0
1

S0
1



FSM Example 1: Divide by 3

25

module divideby3FSM(input  logic clk, 

input  logic reset, 

output logic y);

typedef enum logic [1:0] {S0, S1, S2} statetype;

statetype state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state logic

always_comb

case (state)

S0:      nextstate = S1;

S1:      nextstate = S2;

S2:      nextstate = S0;

default: nextstate = S0;

endcase

// output logic

assign y = (state == S0);

endmodule

S2
0

S1
0

S0
1

Note that a default case is used in the combinational block, to 
be sure that output nextstate receives a value in all cases.

When synthesized, this code will create a circuit with a  
register that has 2 flip-flops and an asynchronous reset. 

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

clkclk

reset



FSM Example 2: Sequence Detector

26

Which sequence will be detected?

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1



Sequence Detector FSM: Moore

27

module patternMoore(input  logic clk, reset, a,

output logic y);

typedef enum logic [1:0] {S0, S1, S2} statetype;

statetype state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state logic

always_comb

case (state)

S0:      if (a) nextstate = S0; 

else   nextstate = S1;

S1:      if (a) nextstate = S2;

else   nextstate = S1;

S2:      if (a) nextstate = S0;

else   nextstate = S1;

default: nextstate = S0;

endcase

// output logic

assign y = (state == S2);

endmodule

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

clkclk

reset

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1



FSM Example 3: Sequence Detector

28

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM



Sequence Detector FSM: Mealy

29

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSMmodule patternMealy(input  logic clk, reset, a,

output logic y);

typedef enum logic {S0, S1} statetype;

statetype state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state and output logic combined

always_comb begin

// make sure y receives value in all ceses.

y = 0; 

case (state)

S0:      if (a) nextstate = S0;

else   nextstate = S1;

S1:      if (a) begin

nextstate = S0;

y = 1;

end

else   nextstate = S1;

default: nextstate = S0;

endcase

end

endmodule

Synthesis:

clkclk

reset



FSM Testbench

`timescale 1ns/1ps

module patternMoore_tb();

logic clk;

logic reset;

logic a, y;

patternMoore dut (clk, reset, a, y);

initial

clk = 0;  

always
#10 clk = ~clk;

initial begin
reset = 1; a = 0; 

#20; reset = 0; 

#20;            a = 1;
end

endmodule

30

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Important: to avoid setup/hold time violations (next lecture), do not change 
input signals on the rising clock edge.  Instead, do it on the negative clock edge. 



EE1D1: Digital Systems A

31

Counters



Counter

32

module counter(input  logic clk, reset, enable,

output logic [7:0] count);

logic [7:0] next_count;

// register

always_ff @(posedge clk)

begin

if (reset) count <= 0;

else count <= next_count;

end

// next state logic 

always_comb

begin

if (enable) next_count = count + 1;

else next_count = count;

end 

endmodule

A counter is an FSM that adds 1 to its state in its next state logic.  
Usually there is no output logic. 

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

stateenable

state ≡ count

clkclk

reset



Counter simulation

33

module counter_tb();

logic clk;

logic reset;

logic enable;

logic [7:0] count;

counter dut (clk, reset, enable, count);

initial

clk = 0;  

always

#10 clk = ~clk;

initial begin

reset = 1; enable = 0; 

#20; reset = 0; 

#40;            enable = 1;

end

endmodule



Summary

We have shown how to describe in SystemVerilog:

• Latches and flip-flops.

• More complex combinational circuits like decoders and encoders.

• Finite-State Machines.

• Counters.

• Testbenches for these circuits.

34


	Slide 1: SystemVerilog Sequential Circuits
	Slide 2:  Recap
	Slide 3:  Learning Objectives
	Slide 4: Overview
	Slide 5: Learned earlier
	Slide 6: Sequential Logic
	Slide 7
	Slide 8: Describing a D flip-flop
	Slide 9: Describing a D flip-flop with reset
	Slide 10: Registers
	Slide 11: Describing a latch
	Slide 12
	Slide 13: Using always statement to describe a combinational circuit
	Slide 14: Using the always statement
	Slide 15: Case Statement
	Slide 16: If Statement
	Slide 17: Truth Tables with Don’t Cares
	Slide 18: Blocking vs. Nonblocking Assignment
	Slide 19: Blocking vs. Nonblocking Assignment
	Slide 20: Blocking vs. Nonblocking Assignment
	Slide 21: Summary of rules for Signal Assignment
	Slide 22
	Slide 23: Finite State Machines
	Slide 24: FSM Example 1: Divide by 3
	Slide 25: FSM Example 1: Divide by 3
	Slide 26: FSM Example 2: Sequence Detector
	Slide 27: Sequence Detector FSM: Moore
	Slide 28: FSM Example 3: Sequence Detector
	Slide 29: Sequence Detector FSM: Mealy
	Slide 30: FSM Testbench
	Slide 31
	Slide 32: Counter
	Slide 33: Counter simulation
	Slide 34: Summary

