EE1D1: Digital Systems A

BSc. EE, year 1, 2025-2026, lecture 8

SystemVerilog Sequential Circuits

Computer Engineering Lab
Faculty of Electrical Engineering, Mathematics & Computer Science

]
TUDelft

Some figures and text
© 2021 Sarah Harris and David Harris

Introduction

Digital Systems

Lecture 2 l Lectures 6-7 1

I Boolean Circuits I I Sequential Logic I
Lecture 3 1 Lecture 8 |
I Intro SystemVerilog I I SystemVerilog Sequential I
Lecture 4 1 l
Lecture 9

I Logic Minimization I

I Sequential Modules I
Lecture 5 1

Combinational Modules,
Implementation Technology
and Floating Point Numbers

Learning Objectives

As student you should be able to:

 Describe latches and flip-flops in SystemVerilog.

Use the always statement in SystemVerilog to
describe sequential circuits and combinational circuits.

Describe Finite-State Machines in SystemVerilog.
Describe counters in SystemVerilog.
Simulate a sequential circuit in SystemVerilog.

« Recap

D Flip-flop and Latch

» The Always Statement
* Finite State Machines
« Counters

Sections in book DDCA: 4.4 — 4.6

Learned earlier

Simulation with testbench

module funcl (input 1logic a, b, c,
output logic y);
logic n;

; Order is not

assign #1 y = n | c
a & b; important

assign #1 n =
endmodule

module testfuncl();
logic a, b, ¢, y;

funcl dut(a, b, c, y);

initial begin
a=0;,b=1;, ¢c=0;
#10;, a = 1;
end
endmodule

x->0(0)c

X ->0(0)->1(10) x->0(1)->1(11)

}_“__1 x->0 (2) ->1 (12)

—y

Within this initial block, order is important.
Starting from begin, statements are executed
one after another (with specified delays)

Sequential Logic

e SystemVerilog uses idioms to describe latches, flip-flops
and FSMs

e Other coding styles may simulate correctly but produce
incorrect hardware after synthesis

e So, you should follow the recommended methods to obtain
reliable simulation results as well as good synthesis results.

e Always keep in mind that — although you may be using a
high-level description - you are describing hardware:
registers (flip-flops) and combinational logic, orchestrated
by the clock.

EE1D1: Digital Systems A

D flip-flop and
latch

Describing a D flip-flop

module dff (input logic clk,
input 1logic d,
output logic q);

always ff Q@ (posedge clk) // on a rising clock edge

q <= d; // q gets the value of d
endmodule
@(....) is the sensitivity list.
d D q It describes what triggers the
| FF 5 execution of the always
A statement.
clk‘

Describing a D flip-flop with reset

It is good practice to use resettable registers so that on powerup you can put your
system in a known state.

synchronous reset =>reset on asynchronous reset => reset at any

rising clock edge moment reset becomes 1

always ff @ (posedge clk) always ff Q(posedge clk, posedge reset)
if (reset) q <= 0; if (reset) q <= 0;

else q <= d; else q <= d;

The following example shows a 4-bit register with asynchronous reset and enable.
It retains its old value if both reset and en are FALSE.

module registerdbit(input 1logic clk,
input 1logic reset,
input 1logic en,

input 1logic [3:0] d,
output logic [3:0] q);

// asynchronous reset .
always ff Q@ (posedge clk, posedge reset) SyntheS|S:
if (reset) g <= 4'b0; e L
else if (en) q <= d; Fﬁﬁﬂ]ffﬁ [3:0] F%L-Dmﬂ] Qa:0) =5 WWZEEEE::}
~Ten —— - E
endmodule R

Describing a latch

The always latch statement is used to describe a latch

d p |4
~’|latch

clk‘
always latch

if (clk) g <= d; // when clk = 1, q gets value of d

// when clk = 0, g remembers its value

A sensitivity list is not allowed; the always latch statement is evaluated
whenever one of the inputs (clk or d) changes value.

Normally, it is not a good idea to use latches in your circuit. They are transparent as

long as clk = 1, so problematic combinational feedback loops may occur. Also, timing
of input signals is more difficult to control.

EE1D1: Digital Systems A

The Always
Statement

Using always statement to describe a combinational circuit

An always comb statement can be used to describe a combinational circuit.

always comb

begin — \4g \
p=a “ b; —)D—S
q=a & b; cin
s = p ~ cin; | b \D D%ut
cout = g | (p & cin); a————) P

end

A sensitivity list is not allowed with always comb; the block will be evaluated
whenever one of the inputs (a, b and cin) change.

It is important that you specify the value of all outputs in all cases.
Otherwise, unwanted latches may be created during synthesis.

always comb always comb
if (s) y = x1; if (s) y = x1;
else y = x0; ok not ok

Using the always statement

A general always statement can also be used.

When it has no sensitivity list, the statement is evaluated whenever one of the inputs
change:

always

When it has a sensitivity list, the statement is evaluated whenever one of the
signals in the sensitivity list changes value:

always @(a, b, cin)

where signal names in the sensitivity list may be preceded by posedge or negedge to
indicate that evaluation is triggered by only a rising edge or falling edge event.

For flip-flops (registers), latches and combinational circuits, the usage of respectively
always ff, always latchand always comb is preferred.
The use of always should be restricted to testbenches.

Case Statement

A combinational circuit for a seven-segment display decoder that uses a case statement

module sevenseg(input logic [3:0] data,
output logic [6:0] segments);
always comb
case (data)

// abc_defg

0: segments = 7'b1l1l1l 1110;

1: segments = 7'b011 _0000; Svnthesis:

2: segments = 7'b110_1101;

3: segments = 7'b1l11 1001;

4: segments = 7'b011 0011; [3:0] rom 6:0]
5: segments = 7'b101_1011; |data30] ~>————A[30] DOUT[6:0] ————fsegments[6:0] >
6: segments = 7'b101 1111;

7: segments = 7'bl1l1l 0000; segments_1[6:0]

8: segments = 7'b1l11 1111;

9: segments = 7'b1l1l1l 0011;

default: segments = 7'b000_0000;

endcase Without default, outputs are not specified for all cases
endmodule and latches will be inferred during synthesis!

A priority circuit that uses a nested if-else statement

module priorityckt (input logic [3:0] a, SynthESIS:
output logic [3:0] vy); o -
always comb
if (a[3]) y = 4'b1000; o])=
else if (a[2]) y = 4'b0100; y-112]
else if (a[].]) Y = 4'b0010; EE Y
else if (a[0]) y = 4'b0001; 2y u (1)
else y = 4'b0000; [un:mJ y_1[1]
endmodule
11 ¢ [0] 0]
) > o

Truth Tables with Don’t Cares

* Truth tables may include don’t cares to allow more logic simplification.
 The following shows how to describe the previous priority circuit with the inside keyword,
which allows don’t cares to be used.

module priority case dc(input 1logic [3:0] a, SynthESiS:
output logic [3:0] y): Y - _—
always comb
case(a) inside // ? = don’t care
4'bl???: y = 4'b1000; // casez(a), as used in book, -ig
4'b01??: y = 4'b0100; // is obsolete y23[0]
4'b001?: y = 4'b0010;
4'b0001: y = 4'b0001; =
default: y = 4'b0000; y24[0]
endcase
endmodule -

Blocking vs. Nonblocking Assignment

In an always statement, there is an important difference between using <= or = in an assignment.

* <=jis anonblocking assignment: The signal on the left receives the value only after the block has been

evaluated. So, the assignments are deferred.

* =is a blocking assignment. The signal on the left receives the value immediately after the assignment.
The execution of a subsequent statement is “blocked” until this has been done. So, the assignments

are immediate, and the order is important.

always ff Q@ (posedge clk)
begin
nl <= d; // nonblocking (deferred)
q <= nl; // nonblocking (deferred)
end

Suppose that initiallyd=1,n1=0andg=0
Then, after 1 rising clock edge:

nl=1andq=0

And after a second rising clock edge:

nl=1andqg=1

always ff Q@ (posedge clk)
begin
nl = d; // blocking (immediate)
q = nl; // blocking (immediate)
end

nl=1andq=1
not different

fromusing q=d
nl=1landg=1

Blocking vs. Nonblocking Assignment

The different behavior also results in a different synthesis results.
(BTW: A synchronizer uses 2 D flip-flops in series to synchronize external inputs with clock.)

// Good synchronizer using
// nonblocking assignments
module syncgood(input 1logic clk,
input 1logic d,
output logic q);
logic nl;
always ff @ (posedge clk)
begin
nl <= d; // nonblocking
q <= nl; // nonblocking
end
endmodule

) ™
%Eg:::::[:m D Qf— >

// Bad synchronizer using
// blocking assignments
module syncbad (input logic clk,
input 1logic d,
output logic q);
logic nl;
always ff @ (posedge clk)
begin
nl = d; // blocking

q = nl; // blocking
end
endmodule
clk = >
H;;:::::[)Q—+——{§;}
q

Blocking vs. Nonblocking Assignment

For always comb blocks it is ok to use blocking assignments:

always comb

begin — 94)
P = a A b,' . __/ /D S
gq=a é&b; c:"z j
s =p A cin; >) cout
cout = g | (p & cin); a—JD P

end

Summary of rules for Signal Assighment

* Synchronous sequential logic: use always ff @ (posedge clk) and
nonblocking assignments (<=)

always ff @ (posedge clk)
q <= d; // nonblocking

e Simple combinational logic: use continuous assignments (assign...)

assign y = a & b;
* More complex combinational logic: use always comb and blocking assignments (=)
* Inan always comb block, assign a value to each output for all input combinations.

e Assign asignal in only one always statement or continuous assignment statement.

EE1D1: Digital Systems A

Finite State
Machines

Finite State Machines

e Three blocks:

_ Moore FSM
— next state logic

— state register C!k '

M next) k next k N
. ' . state - state | output
— output logic Inputs state |- , WU L outputs
logic 9

Mealy FSM
clk
: M next Kk next | k N
Inputs %:l IS;ZEE I/ state) state olz’;pigt outputs
!

state register

FSM Example 1: Divide by 3

L

The arrow indicates the reset state
Sometimes also a double circle is used:

FSM Example 1: Divide by 3

module divideby3FSM(input logic clk,

input logic reset,
output logic y); i

typedef enum logic [1:0] {SO, S1, S2} statetype;
statetype state, nextstate;

// state register
always ff @ (posedge clk, posedge reset)
if (reset) state <= SO;
else state <= nextstate; clk
krmﬂ I k N
// next state logic Inputs - state pstate Oll;:;gt outputs
always comb
case (state)
SO: nextstate = S1; reset
S1: nextstate = S2; _ . . .
S2: nextstate = S0; Note that a default case is used in the combinational block, to
default: nextstate = SO; be sure that output nextstate receives a value in all cases.
endcase
// output logic When synthesized, this code will create a circuit with a
assign y = (state == S0); register that has 2 flip-flops and an asynchronous reset.

endmodule

FSM Example 2: Sequence Detector

Moore FSM

Reset

‘OFONG

Which sequence will be detected?

Sequence Detector FSM: Moore

module patternMoore (input 1logic clk, reset, a,
output logic y);

typedef enum logic [1:0] {SO, S1, S2} statetype;
statetype state, nextstate; Moore FSM

// state register Reset
always ff @ (posedge clk, posedge reset)

0 1
if (reset) state <= SO; g
else state <= nextstate;
// next state logic 1
always comb

case (state)

SO: if (a) nextstate = SO;

else nextstate = S1;
S1: if (a) nextstate = S2;

else nextstate = S1; C”(
S2: if (a) nextstate = SO; . k next k N

else nextstate = S1; mPUtS a state a state output OutputS
default: nextstate = SO; logic

endcase
reset

// output logic
assign y = (state == S2);
endmodule

FSM Example 3: Sequence Detector

Mealy FSM

Reset

0/0

1/0 Q °

Sequence Detector FSM: Mealy

module patternMealy(input logic clk, reset, a,

output logic y) ;

typedef enum logic {SO0, S1} statetype;
statetype state, nextstate;

// state register

always ff @ (posedge clk, posedge reset)

if (reset) state <= SO;

else state <=

// next state and output logic combined

always comb begin

// make sure y receives value in all ceses.

y =0;
case (state)
SO:

S1:

default:
endcase
end
endmodule

if (a) nextstate
else nextstate
if (a) begin

nextstate = SO;

y =1;
end
else nextstate
nextstate = S0O;

nextstate;

output
logic

Mealy FSM
Reset
0/0
1/0
Mealy FSM
clk
. M 7k
inputs +— , state
= SO0;
= S1; !
reset
Synthesis:
Bl
= S1;
E— = Ibjo] po)
Nextstate R
resel r1_?§im

N

outputs

FSM Testbench

"timescale 1lns/lps
module patternMoore tb(); Moore FSM
logic clk;

logic reset;
logic a, y;

patternMoore dut (clk, reset, a, y):;

initial
clk = 0;
always
#10 clk = ~clk;

initial begin

reset = 1; a = 0;
#20; reset = 0;
#20; a=1; ?
end nextstate[1:0]
state[1:0]
endmodule y

Important: to avoid setup/hold time violations (next lecture), do not change
input signals on the rising clock edge. Instead, do it on the negative clock edge.

EE1D1: Digital Systems A

Counters

A counter is an FSM that adds 1 to its state in its next state logic.
Usually there is no output logic.

module counter (input 1logic clk, reset, enable,
output logic [7:0] count);

logic [7:0] next count;

// register

always ff @ (posedge clk) clk
bng:.n K next _| k
if (reset) count <= 0; enable " state - state
else count <= next count; 7 7
end
// next state logic reset
always comb state = count

begin
if (enable) next count = count + 1;
else next count = count;
end
endmodule

Counter simulation

module counter tb();

logic clk;

logic reset;

logic enable;
logic [7:0] count;

counter dut (clk, reset, enable, count);

initial
clk = 0O;
always
#10 clk = ~clk;

initial begin
reset = 1; enable
#20; reset = 0;
#40;
end

I
o

T T T
1

clk

0
o]
&
it
(]
!
[

reset 0

enable 1

nexteownt(70) 8XXJo j . p B 0k g 8 |
endmodule comt7:0] 7XXJo __ft P B B B o _F |

We have shown how to describe in SystemVerilog:
« Latches and flip-flops.
« More complex combinational circuits like decoders and encoders.
* Finite-State Machines.
« Counters.
 Testbenches for these circuits.

	Slide 1: SystemVerilog Sequential Circuits
	Slide 2: Recap
	Slide 3: Learning Objectives
	Slide 4: Overview
	Slide 5: Learned earlier
	Slide 6: Sequential Logic
	Slide 7
	Slide 8: Describing a D flip-flop
	Slide 9: Describing a D flip-flop with reset
	Slide 10: Registers
	Slide 11: Describing a latch
	Slide 12
	Slide 13: Using always statement to describe a combinational circuit
	Slide 14: Using the always statement
	Slide 15: Case Statement
	Slide 16: If Statement
	Slide 17: Truth Tables with Don’t Cares
	Slide 18: Blocking vs. Nonblocking Assignment
	Slide 19: Blocking vs. Nonblocking Assignment
	Slide 20: Blocking vs. Nonblocking Assignment
	Slide 21: Summary of rules for Signal Assignment
	Slide 22
	Slide 23: Finite State Machines
	Slide 24: FSM Example 1: Divide by 3
	Slide 25: FSM Example 1: Divide by 3
	Slide 26: FSM Example 2: Sequence Detector
	Slide 27: Sequence Detector FSM: Moore
	Slide 28: FSM Example 3: Sequence Detector
	Slide 29: Sequence Detector FSM: Mealy
	Slide 30: FSM Testbench
	Slide 31
	Slide 32: Counter
	Slide 33: Counter simulation
	Slide 34: Summary

