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Today
• Recapitulation of Q1

• New topics: 

– Sinusoidal voltages and currents

– Phasors, phasor relations for R, L and C 

– Impedance, admittance

– Analysis examples

– Exam exercise example

• Summary of the day

• Next tasks

EE1C2 “Linear Circuits B”: week 2.1
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Recapitulation of Q1
• You became conversant in the full battery of circuit 

analysis methods

• You have a full dictionary of circuit elements: sources, 

resistances, capacitances, inductances and op amps

• Capacitances and inductances react to changes in 

circuits       you examined transients in first- and 

second-order circuits (transition from a steady-state 

to another steady-state)

• But what will happen if (smooth) change is the 

steady-state?

EE1C2 “Linear Circuits B”: week 2.1
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Sinusoidal voltages and 

currents 

EE1C2 “Linear Circuits B”: week 2.1
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Sinusoids / sinusoidal functions
• Sinusoidal function

– XM = the amplitude

–  ! = the angular frequency          ! t = the argument

• The plot as a function of ! t or as a function of t 

EE1C2 “Linear Circuits B”: week 2.1

( ) sinMx t X t= ( ) ( )x t T x t + =  
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• Basic features: (angular) frequency

• Phase (argument):
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Sinusoids / sinusoidal functions

( ) ( )sinMx t X t = +

1
f

T
=

2
2 f

T


 = =
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• Important:

• Assume that µ > Á; we say that: 

– x1 leads x2 by µ {Á radians

– x2 lags x1 by Á { µ radians
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Sinusoids / sinusoidal functions

( ) ( )1 sinMx t X t = + ( ) ( )2 sinMx t X t = +

𝜔
𝑥1(𝑡)

𝑥2(𝑡)

𝜙
𝜃

𝑥

𝑦
snapshot!

𝑦

𝑥

𝑥(t)

…more in the book
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• The steady-state voltages and currents in circuits fed by 

sinusoidal sources are themselves sinusoidal

• If 

then the current must be of the form

EE1C2 “Linear Circuits B”: week 2.1

Sinusoidal and complex sources

( ) ( )sinv t A t = +

( ) ( )sini t B t = +

Consequence of KVL and KCL

The basis for analysing steady-state AC circuits

v(t)

Linear, 

time-

invariant 

electrical 

network
i(t)
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• Example: RL circuit:

• Phase shift:

– if L = 0      i(t) is in phase with v(t) 

– if R = 0      i(t) lags behind v(t) by 90°

– if L and R are both non-zero       i(t) lags behind v(t) by a value 

between 0° and 90°

EE1C2 “Linear Circuits B”: week 2.1

Sinusoidal and complex sources

differential equation:
( )

( ) cosM

di t
L Ri t V t

dt
+ =

( ) 1

2 2 2
cos tanMV L

i t t
RR L






− 
= − 

 +

R

i(t)

L

v(t) = VM cos ωt
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• It is abundantly clear: even a simple RL circuit involves a 

lot of work

• This can be simpler!

via the relation between sinusoidal functions                      

and complex functions

• Euler relation:
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Sinusoidal and complex sources

   cos sin Re Imj t j t j te t j t e j e   = + = + Leonhard Euler

15 April 1707 – 

18 September 1783
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• Assume a non-physical voltage source

• The current response can be written by making use of 

linearity and superposition

• And thus:
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Sinusoidal and complex sources
( ) j t

Mv t V e =

( ) ( ) ( )cos sinM Mi t I t jI t   = + + +

( ) cos sinM Mv t V t jV t = +

( ) ( )j t

Mi t I e
 +

=
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Is this really easier?

• Assume again

• We now apply VMe 
j!t instead of VMcos(!t) 

• The current response must be of the form
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Sinusoidal and complex sources R

i(t)

L

v(t) = VM cos ωt( )
( ) cosM

di t
L Ri t V t

dt
+ =

( ) ( )j t

Mi t I e
 +

=
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• By filling in the quantities in the differential

equation

• It is found that:
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Sinusoidal and complex sources R

i(t)

L

v(t) = VM cos ωt

( )
( ) cosM

di t
L Ri t V t

dt
+ =

VM e jωt( ) ( )j t

Mi t I e
 +

=

( ) ( )j t j t j t

M M Mj LI e RI e V e     + ++ =



16

• Divide by e 
j!t

and do the algebra

• Express the complex result in polar coordinates: 
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Sinusoidal and complex sources R

i(t)

L

v(t) = VM cos ωt

j j

M M Mj LI e RI e V  + =

( )1tan /

2 2 2

j L Rj M
M

V
I e e

R L





− −
 =

+

j M
M

V
I e

R j L




=

+
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• Thus

• But 

is complex         non-physical!

• We put back the e 
j!t part and take the real part of the result
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Sinusoidal and complex sources R

i(t)

L

v(t) = VM cos ωt

( ) ( ) 1

2 2 2
cos cos tanM

M

V L
i t I t t

RR L


  



− 
= + = − 

 +

( )1tan /

2 2 2

j L Rj M
M

V
I e e

R L





− −
 =

+

2 2 2

M
M

V
I

R L
=

+

1tan
L

R


 −= −&
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Phasors 

EE1C2 “Linear Circuits B”: week 2.1
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Phasors
• We observed that e 

j!t occurs overall without itself changing

– we can ignore this term and only keep in mind the frequency

– we then carry on in terms of the magnitude and phase, only

• We write

as                                       and ignore (for now) e 
j!t   

EE1C2 “Linear Circuits B”: week 2.1

( ) ( ) ( )
cos Re

j t

M Mv t V t V e
 

 
+ = + =

 

( ) ( )Re j t

Mv t V e = ( ) ( )Re j t

Mv t V e = 

The direct phasor transform MV 
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Phasors
• Phasors are usually typeset as boldface letters

• The differential equation in the example

becomes after dividing by e 
j!t :

• Rules for operating with phasors:

– derivative:  d/dt  (j!)  

–  integral:    s...dt  (1/j!)    
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MV = V

( )
( ) cosM

di t
L Ri t V t

dt
+ =

j L R + =I I V

formal 

substitution
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Phasors

• Applying these rules entails that 

• The real current can then be expressed as
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1

2 2 2
tanM

M

V L
I

j L R RR L




 

−= =  = −
+ +

V
I

The inverse phasor transform

( ) 1

2 2 2
cos tanMV L

i t t
RR L






− 
= − 

 +
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Phasors

• Summarising:

– at a first glance, this method seems more intricate

– but it allows replacing differential equations by algebraic equations 

that are clearly easier to handle

• Algorithm: 

1) Write the differential equations and transform them into algebraic 

ones by making use of phasors and the derivative/integral rules

2) Solve the algebraic equations

3) Transform the derived phasors back to the time-domain

EE1C2 “Linear Circuits B”: week 2.1
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Phasors

• Summarising:

– at a first glance, this method seems more intricate

– but it allows replacing differential equations by algebraic equations 

that are clearly easier to handle

• Algorithm: 

1) Write the differential equations and transform them into algebraic 

ones by making use of phasors and the derivative/integral rules

2) Solve the algebraic equations

3) Transform the derived phasors back to the time-domain

EE1C2 “Linear Circuits B”: week 2.1

C.P. Steinmetz, “Complex quantities and their use in 

electrical engineering,” 1893
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Phasors

• Summarising:

– at a first glance, this method seems more intricate

– but it allows replacing differential equations by algebraic equations 

that are clearly easier to handle

• Algorithm: 

1) Write the differential equations and transform them into algebraic 

ones by making use of phasors and the derivative/integral rules

2) Solve the algebraic equations

3) Transform the derived phasors back to the time-domain

EE1C2 “Linear Circuits B”: week 2.1

A (not so) small detail concerning the phasor electrical 

quantities V = VM ∠θv and I = IM ∠θi

• VM, IM = magnitudes (amenable to measurement)

• θv, θi = phases (actually, time delays)

• the combination of the two = a complex number

Assigning a measure unit to a phasor (or any complex 

number) makes no physical sense! (still, it is often done…)
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Phasor relations

• We now want to deal with circuits by using phasors

• We also want to establish in this way relations between  
R, L and C  

EE1C2 “Linear Circuits B”: week 2.1
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Phasor relations

• Resistances:

• In phasor form:

EE1C2 “Linear Circuits B”: week 2.1

( ) ( )v t Ri t=

( ) ( )v ij t j t

M MV e RI e
   + +

=

v ij j

M MV e RI e
 
=

vj

M M vV e V
 = = V ij

M M iI e I
 = = I

C
ir

cu
it

C
ir

cu
it

R=V I
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time-domain

complex plane

Phasor relations

• The phases µv and µi are equal 

V and I are “in phase”

• This can be cast into a phasor   

diagram

– amplitude ratios

– phase shifts

– which phasor leads or lags?

EE1C2 “Linear Circuits B”: week 2.1

R=V I vj

M M vV e V
 = = V ij

M M iI e I
 = = I(                            ,                            )



28

Phasor relations

• Inductances:

• Again, the same steps:
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( )
( )di t

v t L
dt

=

( ) ( )v ij t j t

M M

d
V e L I e

dt

   + +
=

v ij j

M MV e j LI e
 =

j L=V I

C
ir

cu
it

C
ir

cu
it
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Phasor relations

• For j it holds that

•                              then becomes

• The voltage thus leads the current by 90°

EE1C2 “Linear Circuits B”: week 2.1

901 1 90jj e = =  

v ij j

M MV e j LI e
 =

( )90iv
jj

M MV e LI e
 
+ 

=
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C
ir

cu
itPhasor relations

• Capacities: similar derivation

• Here, it holds that

• The current thus leads the voltage                                   

by 90°

EE1C2 “Linear Circuits B”: week 2.1

i vj j

M MI e j CV e
 =

( )90vi
jj

M MI e CV e
 
+ 

=

j C=I V
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Phasors       phasor transform

• Sinusoidal feeding         sinusoidal response

• The term e 
j!t occurs in all equations without changing

– we ignore this term and only keep in mind the frequency

– calculations are done for the magnitude and phase, only

• We then write:

EE1C2 “Linear Circuits B”: week 2.1

( ) ( )Re j t

Mv t V e = ( ) ( ) ( )
cos Re

j t

M Mv t V t V e
 

 
+ = + =

  ( ) ( )Re j t

Mv t V e =  ∙

Inverse phasor transform 

Direct phasor transform
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Phasors       phasor transform

• Sinusoidal feeding         sinusoidal response

• The term e 
j!t occurs in all equations without changing

– we ignore this term and only keep in mind the frequency

– calculations are done for the magnitude and phase, only

• We then write:

EE1C2 “Linear Circuits B”: week 2.1

( ) ( )Re j t

Mv t V e = ( ) ( ) ( )
cos Re

j t

M Mv t V t V e
 

 
+ = + =

  ( ) ( )Re j t

Mv t V e =  ∙

Inverse phasor transform 

Direct phasor transform

The phasor transform applies to time-depending 

quantities, only



33

Real space Complex space

EE1C2 “Linear Circuits B”: week 2.1

x

y

O
x

jy

O

No !t
No complex value

(no j)

Phasors       phasor transform
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Impedances 

EE1C2 “Linear Circuits B”: week 2.1
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Impedances and admittances
• Impedance = an analogous of the time-domain resistance 

that is valid in the frequency-domain

• Since V and I are both complex      Z is also complex

• The measure unit of Z = jZj is ohm

EE1C2 “Linear Circuits B”: week 2.1

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z

Z =
V

I

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z
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Impedances and admittances
• In Cartesian coordinates, the impedance reads

with R(!) being the resistive component (real part) and 

X(!) the reactive component (imaginary part)

• R(!) and X(!) are real functions of ! Z is also a 

function of ! 

• Z is not a phasor      the phasor transform applies to time-
dependent quantities, whereas Z is a ratio (a constant)

EE1C2 “Linear Circuits B”: week 2.1

Z(ω) = R(ω) + jX(ω)
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Impedances and admittances
• Impedance parameters:

• Impedances (AC)         Resistances (DC)                         

for series and parallel impedances it holds that

EE1C2 “Linear Circuits B”: week 2.1

S 1 2 3 4 n

P 1 2 3 4 n

Z Z Z Z Z ... Z

1 1 1 1 1 1
...

Z Z Z Z Z Z

= + + + + +

= + + + + +

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


ZM v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z

zZ R jX = + 2 2Z R X= +
1tanz

X

R
 −=&
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Impedances and admittances
By accounting for phasor relations, resistances, inductances 

and capacities entail the following impedances

EE1C2 “Linear Circuits B”: week 2.1

Element Phasor Equation Impedance

Z

Z

1 1
Z

R R R

L j L j L

C
j C j C

 

 

= =

= =

= =

V I

V I

V I

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z

M v M
v i z

M i M

V V
Z

I I


  




= =  − = 


Z
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Impedances and admittances
• The resistance’s inverse is the conductance                   

the impedance’s inverse is the admittance

– the measure unit of Y = jY j is siemens

– it is spilt-up as Y = Y\µ y = G + jB in which G(!) is the 

conductance and B(!) is the susceptance

• The same rules for series/parallel connections hold

EE1C2 “Linear Circuits B”: week 2.1

Z

1
Y = =

V

I
M v M

v i z

M i M

V V
Z

I I


  




= =  − = 


Z

Y
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Phasor diagrams
• Impedances and admittances are frequency dependent 

so are the voltage       current relations in the network

• For the upper node it holds via KCL:

EE1C2 “Linear Circuits B”: week 2.1

Z Z Z 1/
S R L C

R L C R j L j C 
= + + = + + = + +

V V V V V V
I I I I
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Phasor diagrams

• We take: V = VM\0° (origin of the phase)

• It then follows that:

EE1C2 “Linear Circuits B”: week 2.1

0MV=  V

0 90
90M M

S M

V V
V C

R L




  − 
= + +  I
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Phasor diagrams

• This can be represented graphically as

EE1C2 “Linear Circuits B”: week 2.1

0 90
90M M

S M

V V
V C

R L




  − 
= + +  I

Voltages, currents Relatively high ! Relatively low ! 

phasor diagrams
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Phasor diagrams

• As frequency increases, IS moves from bottom to the top

• When IC = IL, then IS and V are in phase

– this occurs at

– this can also be derived from KCL

EE1C2 “Linear Circuits B”: week 2.1

0 90
90M M

S M

V V
V C

R L




  − 
= + +  I

1

LC
 =

1 1
S j C

R L




  
= + −  

  
I V
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Examples 

EE1C2 “Linear Circuits B”: week 2.1



45

Example 1
Consider the circuit at the                                              
right. Determine Io.

• Preliminaries:

– sources transformed to the phasor domain (extract !,      

the two sources are in phase)

– calculate the values of the impedances: R → R, L → j!L,    

C → 1/j! C = {j/!C 

–  these operations are part of the exercise!

EE1C2 “Linear Circuits B”: week 2.1
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Example 1
Consider the circuit at the 
right. Determine Io.

• One can opt for various 

solution techniques  

choice: nodal analysis

• Super-node:

• Substitution:

EE1C2 “Linear Circuits B”: week 2.1

1 2 2V V V
2 0 0

1 1 1j j
−  + + =

+ −

V V V
1 2V 6 0 V+   =V V

2 2
2

V 6 0 V
2 0 V 0

1 1j j

−  
−  + + =

+ −
V

VV

&
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(A)

Example 1
• Algebraic manipulation:

– this entails:

• Thus: 

EE1C2 “Linear Circuits B”: week 2.1
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Example 2
• Source transformation

• Consider the circuit at the   
right. Determine Vx.

• Source transformation: Vs → Is

EE1C2 “Linear Circuits B”: week 2.1
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Example 2
• Parallel impedances:

• Back to Thévenin: Vs → Is

• Voltage division:

EE1C2 “Linear Circuits B”: week 2.1
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Example 2
• Algebraic manipulation:

EE1C2 “Linear Circuits B”: week 2.1
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Exam exercise example 

EE1C2 “Linear Circuits B”: week 2.1
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Exam(ple)

• Consider the circuit in the                                                 

figure at the right:

a) Determine         .

b) For which condition is          frequency independent?

EE1C2 “Linear Circuits B”: week 2.1

+

–

+

–
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Exam(ple)

a) Determine         .

• Calculate the partial impedances:

–  

–  

• Determine the transfer: 

EE1C2 “Linear Circuits B”: week 2.1

+

–

+

–
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Exam(ple)
b) For which condition is          frequency independent?

• For obtaining frequency independence, the terms 

containing ω must vanish from the expression

• By taking                                                             which 

is indeed frequency independent

EE1C2 “Linear Circuits B”: week 2.1
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Summary of the day

• Sinusoidal voltages and currents

• Phasors, phasor relations for R, L and C

• Impedance, admittance, phasor diagrams

• Analysis examples

EE1C2 “Linear Circuits B”: week 2.1
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Next tasks

• Please do the SGH1

• Seminars of Tuesday and Friday

• Next week: transfer functions

Thank you!
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