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Today

Recapitulation of Q1

New topics:

— Sinusoidal voltages and currents
— Phasors, phasor relations for R, L and C

— Impedance, admittance
— Analysis examples
— Exam exercise example

Summary of the day
Next tasks
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Recapitulation of Q1

* You became conversant in the full battery of circuit
analysis methods

* You have a full dictionary of circuit elements: sources,
resistances, capacitances, inductances and op amps

« Capacitances and inductances react to changes in
circuits = you examined transients in first- and
second-order circuits (transition from a steady-state
to another steady-state)

« But what will happen if (smooth) change is the
steady-state?
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Sinusoidal voltages and
currents

%
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Sinusoids / sinusoidal functions
e Sinusoidal function

x(t)=X,, sin ot

x[a)(t+

— Xy = the amplitude
— w = the angular frequency == wt = the argument

T)] =x(ar)

* The plot as a function of wt or as a function of ¢
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Sinusoids / sinusoidal functions

. 2
 Basic features: (angular) frequency f :% - o= 77[ =2 f
» Phase (argument): x(en)y

, Xy sin (ot + 0)
E ’ . Xy sin wt
4 \ .
—r q \\ - l/

x(t) =X, sin (ot +0) e ~m ot
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* Important:
x(t)=X,sin(wt+0) x,(t)=X, sin(wt+¢)

« Assume that 0 > ¢; we say that: 7V
— =, leads z, by 6 —¢ radians x4(t)
w
— x,lags =, by ¢ - 0 radians

sin(wt) = cos(wt — 7/2) xZ(t)
a cos(wt) + bsin(wt) = . ¢ cos(wt — 0) 0
more in the book

‘snapshot! |

os(0)
with 6 = arctan(b/a), (a #0) ...

Y

]
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Sinusoidal and complex sources

* The steady-state voltages and currents in circuits fed by
sinusoidal sources are themselves sinusoidal

]

Consequence of KVL and KCL Linear,

: time-
o If v(t) = Asm(a)t + 0) V(1) e invariant
then the current must be of the form Y Clectrical
network

i(t)=Bsin(wt +¢)

The basis for analysing steady-state AC circuits

%
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Sinusoidal and complex sources

* Example: RL circuit:
differential equation: Lle(t)+Ri(t):VM cos ot

v(t) =V, cos wt

t
| v, ( L a)Lj /
i(1)= cos| wt —tan” —
VR + I R
* Phase shift:
— if L = 0==i(t) is in phase with v(t)
— if R = 0= i(t) lags behind v(t) by 90°

— if L and R are both non-zero = i(t) lags behind v(t) by a value
between 0° and 90°

%
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Sinusoidal and complex sources

* |t is abundantly clear: even a simple RL circuit involves a
lot of work

* This can be simpler!

via the relation between sinusoidal functions
and complex functions

 Euler relation:

e’” =coswt + jsinwt = Re {ej“”} +j Im{ej“”} } Leonhard Euler
15 April 1707 —

18 September 1783

%
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Sinusoidal and complex sources
- Assume a non-physical voltage source v(z) =V, e’

v(t)=V,, cosat + jV,, sinwt

* The current response can be written by making use of
linearity and superposition

i(t)=1, cos(wt+¢)+ I, sin(wt+4¢)

- And thus: [i(t):]Mej(me J

%
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Sinusoidal and complex sources

Is this really easier?

d (t) + Ri(t) =V,, coswt
dt i)

V() =V, cos ot

* Assume again L

- We now apply Ve instead of V},cos(wt)

» The current response must be of the form [i (1) = ]Mej(wﬁmj

%
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Sinusoidal and complex sources
By filling in the quantities in the differential

di(t)

V() =V, cos ot

equation L +Ri(t)=V,, coswt
N/ ]
1,y e

* |tis found that:

; J(ot+¢) jlot+d) jot
JoLl, e +RI, e =V, e

%
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Sinusoidal and complex sources

* Divide by e*t — - ja)LIMej¢ —I—R]Mej¢ =V,

V() =V, cos ot

VM

and do the algebra - - [ e/ =
J YO T R+ joL i

- Express the complex result in polar coordinates:

VM j[—tan_l(a)L/R)]

JP _
l,e e

JR+ 0’

%
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Sinusoidal and complex sources

. Thus 7, = —— 8 g=—tan 2L
\/R + o’ L R
. But 7, ¢ = ——u e en) o
N 0

IS complex = non-physical!
« We put back the e“t part and take the real part of the result

L
i(t)=1, cos(wt+¢)= d cos(a)t tan”' a)_j
JR? + I R
%
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Phasors
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Phasors

* We observed that ¢! occurs overall without itself changing

— we can ignore this term and only keep in mind the frequency
— we then carry on in terms of the magnitude and phase, only

- We write v(t)=V,, cos(awt+6) = Re[VMej(””H)]

as v(t) = Re(VMLQ ej“”") and ignore elwt

.

The direct phasor transform vV, 26

%
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Phasors
« Phasors are usually typeset as boldface letters V=V,, 26

* The differential equation in the example

di (t) forma! J
L +Ri(t)=V,, cos ot < —(I e’ ) + RIe’ =Ve'
dt dt
becomes after dividing by e“: joLl1+ Rl =V

* Rules for operating with phasors:
— derivative: d/dt == (jw)

. — integral: f...dt = (1/jw)
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Phasors

* Applying these rules entails that

-—" Y P
joL+R JR? + 0’12 R

* The real current can then be expressed as

V, wL
(1) = M t—tan” —
[l( ) JR? + 0’ I Cos(w U R U

The inverse phasor transform

%
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Phasors

e Summarising:
— at a first glance, this method seems more intricate

— but it allows replacing differential equations by algebraic equations
that are clearly easier to handle

 Algorithm:

1) Write the differential equations and transform them into algebraic
ones by making use of phasors and the derivative/integral rules

2) Solve the algebraic equations
3) Transform the derived phasors back to the time-domain

%
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Phasors COMPLEX QUANTITIES AND THEIR USE IN
ELECTRICAL ENGINEERING.

* Summarising BY CHAS. PROTEUS STEINMETZ.
— at a first glanc

I.—INTRODUCTION.

— butitallows r 1y the following, I shall outline a method of calculating alter-
that are clear nate current phenomena, which, I believe, differs from former
methods essentially in 8o far, as it allows us to represent the alter-
o A|gorithm: nate current, the sine-function of time, by a constant numerical
: ., quantity, and thereby eliminates the independent variable ¢ time”

1) Write the di altogether from the calculation of alternate current phenomena.
ones by ma  Herefrom results a considerable simplification of methods.

RMRSIROEE] C P Steinmetz, “Complex quantities and their use in
3) Transform tElElaigler=INCTglo[lal=T=1xale RN KeICK!

%
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Phasors

¢ Summarising:

A (not so) small detail concerning the phasor electrical
quantities V=171,, 420, and I = [, 20,

Vu, Iy = magnitudes (amenable to measurement)
» 6, 6.= phases (actually, time delays)
 the combination of the two = a complex number

Assigning a measure unit to a phasor (or any complex
number) makes no physical sense!

%
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Phasor relations

* We now want to deal with circuits by using phasors

+ We also want to establish in this way relations between
R, Land C

%
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Phasor relations
- Resistances: v(r)=Ri(¢)

VM ej(a)t+¢9v) _ R[M ej(a)t+9i)

jev — .]91
Ve =RI,e

* |In phasor form: [V:RI]

E

V=v,"=v,20, 1=1,"=1,6/6

%
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Lcomplex plane]

Phasor relations L im /V

V=RL (V=v,*=v ,0,6 1=1,"%=1,,6)
M M % M M i

» The phases 6, ,and 6. are equal —— 0, - 0,
J and I are “in phase”

* This can be cast into a phasor
diagram
— amplitude ratios _ V.,

— phase shifts ol \/ ot
— which phasor leads or lags? o

Ltime-domain ]

%
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Phasor relations
di(t)

dt

* Inductances: v(¢)=L

* Again, the same steps:

y el [ d 7 o)

dr v
|

V, e = joll, e

|V=joLl |

(; .
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Phasor relations

« Forjit holds that j=1¢/” =1.90°

. V., " = joLI, e then becomes V, e’ =wLI, &%)
» The voltage thus leads the current by 90°

A Im w(0), i(t) } ?;(I)
Vv N\

0, =6; +90° / \
X a0 . [ .

%
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Phasor relations

« Capacities: similar derivation
16" = joCV,e —— |I=jaCV |

- Here, it holds that I,¢% = wCV,, e %)

* The current thus leads the voltage
by 90°

%
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Phasors — phasor transform

 Sinusoidal feeding = sinusoidal response

* The term el«t occurs in all equations without changing

— we ignore this term and only keep in mind the frequency
— calculations are done for the magnitude and phase, only

 We then write:

|
v(t)=V,, cos(wt+0)= Re[VMej(”’”@)] = Re(VMLH -ej“”)
\ Yy J

I Inverse phasor transform

%
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Phasors — phasor transform

 Sinusoidal feeding = sinusoidal response
* The term e+t occurs in all equations without changing

hThe phasor transform applies to time-depending

guantities, only

| . ~ Direct phasor transform

v(t)=7, cos(wr+0)=Re| V,,e" """ | =Re(V, 26 )
\

)

Y

1 ~ Inverse phasor transform

%
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Phasors <~ phasor transform

) ) . Agb — 92 91
- ~ A1 cos(wt + 01)

V><

|
!
!
!
!
!
!
!
l

Complex space

. Real space

‘No complex value
(no j)

% ,
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Impedances
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Impedances and admittances

* Impedance = an analogous of the time-domain resistance
that is valid in the frequency-domain

=3

« Since Vand I are both complex - Z is also complex

/= V20, VMA@ -0 =7/0.

1,20, I,
* The measure unit of Z = |Z| is ohm

%
TU Delft EE1C2 “Linear Circuits B”: week 2.1 35



Impedances and admittances

 |In Cartesian coordinates, the impedance reads
Z(w) = R(w) + jX()
with R(w) being the resistive component (real part) and
X(w) the reactive component (imaginary part)

* R(w) and X(w) are real functions of w == Zis also a
function of w

* 7 is not a phasor == the phasor transform applies to time-
dependent quantities, whereas Z is a ratio (a constant)

%
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Impedances and admittances

* Impedance parameters:

X
Z/0. =R+ jX —— Z=NR+X*> & 0. =tan =

* Impedances (AC) <« Resistances (DC) -
for series and parallel impedances it holds that
1.=1.+1,+1,+1, +. . +1
1 1 1 1 1 1

=—t—F—t+—F..+—
7. 7. 7. 7. 7, Z

n

%
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Impedances and admittances

By accounting for phasor relations, resistances, inductances
and capacities entail the following impedances

%
TUDelft

Element | Phasor Equation | Impedance
R V =RI Z=R
L V= jwlLl 1= joL
C V = L I 71 = 1
joC joC
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Impedances and admittances

* The resistance’s inverse is the conductance =
the impedance’s inverse is the admittance

(-5

— the measure unit of Y = Y| is siemens
— itis spilt-upas Y=Y/, = G + jBin which G(w) is the
conductance and B(w) is the susceptance

* The same rules for series/parallel connections hold

%
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Phasor diagrams

* Impedances and admittances are frequency dependent =

so are the voltage <= current relations in the network
\%

; I
TONNEE LI T

IR IL Ic‘V

* For the upper node it holds via KCL.:
IS:IR+IL+IC=V+V+V=X v v
Z, Z, Z. R joL 1/]wc

%
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Phasor diagrams

Ig R JoL _

V = VMZOO Iz I; Loy

« We take: V= V,,£0° (origin of the phase)

V,,Z0° N V,,Z—90°
wl

* It then follows that: I = +V,,0CZL90°

%
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Phasor diagrams

I

V400V, £-90°

L

+V,,0C/90°

 This can be represented graphically as phasor diagrams

\—LVoItages, currents

o]
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4 )

A I(‘

v
IL+I(~\

LReIativer low w I
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Phasor diagrams
_Vuy40° ¥, £-90°
' R oL

I

+V, wC£90°

- As frequency increases, I moves from bottom to the top

* When I, = I, then I and Vare in phase

: 1
— this occurs at w=—

JLC

— this can also be derived from KCL

1 1
I =|—+/]| @C—— ||V
: {R ’( wLﬂ

%
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Examples
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Example 1

Consider the circuit at the
right. Determine I..

* Preliminaries: —
— sources transformed to the phasor domain (extract w,
the two sources are in phase)
— calculate the values of the impedances: R— R, L — jwL,
C—1/jwC = —j/wC
— these operations are part of the exercise!

%
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Example 1

Consider the circuit at the
right. Determine I..

* One can opt for various
solution techniques =

choice: nodal analysis

» Super-node: 1V1 —240"+V2 + v,

=0 & V, +6£0°=YV,

« Substitution:

%
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Example 1

- Algebraic manipulation:
V, =620 ~2/0°+V, + Yoy
1+ 1-j

V{ L. 11:6+2+2] L

1+

— this entails: V, = (1—] (A)

T -

. 2 2

. Thus: Io=[4+’.] - Y2 Z(tanli—tanli)[Zx/_S.SL—ﬂo}
1+ V12 +17

%
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Example 2 o X
« Source transformation v, =1} [:} Z,
VS O b O b

VS = ZSIS GE»IS — ZS V. =Z]1, I %

- Consider the circuit at the ! sa)]  an 70
right. Determine V_. :

20./-90° V1 30
- Source transformation: V, - I, ! HONS o o 2
20 /—90°

L =———=4/-90° = —j4A

%
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1 =

4 Q
||
| [ N‘N I
Example 2 o
- Parallel impedances: ® |zsa j4 0 wa
20T 54150 —
s+j4 4 —J13Q
« Back to Thevenin: V. — I_ | 250
V,=1Z, = —j42.5 + j1.25 =5 —jl0V ISz_HA@ 100 %
j125Q

 Voltage division:

V. =
104+ 254125+ 4 — 13

%
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(5 — j10)V
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O

V,=5-j10V

49



Example 2

- Algebraic manipulation:

_‘1
10 s_ o) - 50-100

10425+ j125+4— /13 16.5— j11.75

%
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J50% +100? (t

=\/ - 2 an_lﬂ—tan_l—‘“'”)
16.5°+11.75

50 16.5

~552,/-28°(V)
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Exam exercise example
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Exam(ple) i

 Consider the circuit in the Ry
figure at the right: — MWW\ A
Vin RQ 02:: Vout
. Vout
a) Determine . . _ _

1n
Vout

b) For which condition is v

frequency independent?

%
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Ry
Exam(plezf _ %
. out
a) Determine v v RS C== Vou
- Calculate the partial impedances: } )
S N [e =
Y Rt T wRGH
- 42 = (R2 H 02) 1 —|—ij202
* Determine the transfer:
V out Zo Rg(l +ij101)

5 Vi, - Z1+ 2o - Rl(l +ij202)—|—R2(1 —|—ij101)
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Exam(ple)

Vou .
b) For which condition is v : frequency independent?
Vout R2(1 —|—jLUR101)

Vin B Rl(l —|—ij202) —+ Rg(l —|—ij101)

 For obtaining frequency independence, the terms
containing w must vanish from the expression

. Vout R2 .
- Bytaking RCy = Ro(y — = — which
y g 10y 29 Vo Rt Ry

IS indeed frequency independent

%
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Summary of the day

 Sinusoidal voltages and currents

* Phasors, phasor relations for R, L and C
* Impedance, admittance, phasor diagrams

* Analysis examples

EE1C2 “Linear Circuits B”: week 2.1
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Next tasks

* Please do the SGH1
- Seminars of Tuesday and Friday

* Next week: transfer functions

Thank you!
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