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Today

« Recap: passive and active filter networks

 Week 2.4:
— Instantaneous power
— Average power
— Maximum average power
— RMS value

« Summary and Next Week
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Recap of Week 2.3

* Filter Networks
— Low-pass, high-pass, band-pass and band-stop (notch)
filters
— Resonant circuits, cutoff frequency, bandwidth, quality
factor
— Passive vs active filters
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ldeal Filters

Type of Filter H(0) H(x) H(w,) or H(w)
Lowpass 1 0 1/V2
Highpass 0 1 1/V2
Bandpass 0 0 |
Bandstop 1 1 0

w.. 1s the cutoff frequency for lowpass and highpass filters; w, is the center frequency for
bandpass and bandstop filters.

Recall from the last lecture the analysis to the limit of w to identify the type of
% filter!
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Resonant Circuits

SERIES RESONANT CIRCUIT

PARALLEL RESONANT CIRCUIT

Circuit

Network function

O 1

)
./
[~
=
t-q
1L
I
O

Resonant frequency wg = wp =
vLC LC

Maximum magnitude k= 1 k=R

R

Quality factor = 1 /L =R ;"E
Q R~NC Q L
Bandwidth Baw= R BW= L
L RC

Recall from last lecture the definition of resonance, which is valid

also for circuits where the components are not all in series or parallel.
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-Instantaneous and Average Power
-Maximum Power Transfer
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Instantaneous Power

With sinusoidal voltages and currents...

+ We make use of the passive sign convention for
calculating the instantaneous power which is
by definition p(t) = v(t)i(t)

~.
—~
YV ' ~
p——

« If v(t)=V, cos(art+86,) i(t)=1, cos(wr+0) v(t) Z

Then the power can be rewritten as
p(t)=v(2)i(t)=V,1,, cos(at+6,)cos(wt+6)

1 Here a trigonometric identity has been used
V1,

[cos 0, —06,)+cos(2wt+0, +6?)]

p(t)=
%
TUDelft



Instantaneous Power

Examining the cosine terms: 0

plo) == Gs{2ar+0,+3) =

v(?) Z

« the first term is constant in time and depends on
the phase difference between voltage and current

« the second term is time dependant, and fluctuates
between positive values (the circuit absorbs \,,m, T A e
power) and negative values (the circuit transfers
power to the source...) /

— But...where is such power in the circuit coming from,
where is it stored?

%
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Average Power

* As the power changes with time, we can compute an average.

« The average power is calculated by integrating the instantaneous
power over a full period T and dividing by T

to+T

1
P= ;[ p(1)dt
to+T

j Vil cos(at +6,)cos(wt+06,)dt

fy

P=a
T

Where {, is arbitrary, T = 27w, and P is measured in Watt

Average power is sometimes called real power, because it describes the
power that is transformed from electric to nonelectric energy (e.g., heat).

%
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Average Power

* The integral of the instantaneous power is manageable

(right? If not ask... JT Vil Foos(0,-0) +Ww

. I
This becomes: P=2Vilycos(6,-6)

What happens to the average power if the circuit is made of only
resistors, and of only inductors or capacitors?
1

» For a purely resistive network: p=ty; _Lpp :lmzR
m>m m 2

* For a purely reactive network: 1
P= > Vil c0s(90°)=0

]
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Purely Inductive and Capacitive Networks

* For a purely inductive network: 6, — 6, = +90°
 For a purely capacitive network: 9, — 9, = —90°

 In a purely inductive and capacitive circuits, the average
power is zero.

« Therefore, no transformation of energy from electric to
nonelectric form takes place.

* The power is continually exchanged between the source
driving the circuit and the electric or magnetic field
associated with the elements.

%
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Example 1

Calculate the average power at the terminals of the network i

—l

If v = 100cos (wt + 15°) V, and i = 4sin (et — 15°) A. -

Simple application of the formula we have just studied.
No!!l The current jis expressed in terms of the sine function!

The first step in the calculation for P is to rewrite / as a cosine, before using the formula.
i = 4cos(wt — 1057) A.
1
P = 5(1(]())(4) cos [15 — (—105)] = —100 W

The negative value of means that the network inside the box is delivering average power
to the terminals.

%
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Maximum Average Power Transfer 1

In Linear Circuit A we established that to maximise power delivered to a load in a
resistive only circuit, the condition was that R =R;4, where Ry, is the equivalent

resistance of the circuit.

Let us now look at this more generic case with (complex) impedances.

« The average power transferred to the load is P :lVL I, cos(& _0 )

* For this circuit it holds that

%
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- ZTh +ZL
ZTh = gy, +jXTh

L

C T Z I
V7 11 e
b z,+7, : :
Z,=R, +jX, :VOCCtD :VL ZL
1 1
1 i
: C—
1 &
1 ac circuit !
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.
ac circuit

Maximum Average Power Transfer 2~

Current and voltage at the load are complex numbers, we want to calculate their absolute values. Let
us start from |,

Voc Voc
IL = = -
Zin+Z, (RentRp) +j(Xen + X1)

= |I]?

Before calculating the absolute value, you need to rationalise the expression (i.e., no complex
numbers at the denominator!). Please familiarize yourself with rationalization of complex functions!
[ = Voc (Ren+RL) = jXen + X1) _ Voc[(RentR1) = j(Xen + X)]

P RentRL) +Xen + X1) (Ren+RL) — j(Xen + X))~ [(Ren+RL)? + (Xen+X1)?]

Look at this expression. The numerator is written as real & imaginary part, the denominator is real. At
this stage you can calculate absolute value by definition (square root of the squared real part plus
squared imaginary part).

~ (Ren+Ry) 2 ~(Xen + X1) 2 [(Ren+R.)? + (Xen+X.)?]
|1L|—|voc|j[(Rm+ |+l —|%c|j[

R)? + (Xen+X1) RL)? + (Xen+X1)? (Ren+RL)? + (Xen+X,)212
Vol

% > 2
TUDelft VIRn+RL)? + (Xen+X1)?] .
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Maximum Average Power Transfer 3~

ac circuit

What about the magnitude of the voltage? We can use the generalized concept of Ohm’s law with impedances.

|Voc| |Voc| R%"‘X%
= > > - |VL| = |ZLIL| = |ZL||IL| = > >
VIRn+R)? + Xen+X1)2 VIRp+R? + (XentX1)?]

|1,

What is missing now to calculate the average power on the load, is the factor cos(6y,; — 6;,). We can demonstrate that
this is the phase of the impedance of the load, in fact:
V, = Z.I;, in polar form — |V, |e/ovL = |Z,|e/02L|], |e/1L only the phases — Oy, = 05, + 0;, = Oy, — 6, = 04,

A
1Z,| ,,
So we now want to find cos(8;). Let us think of the complex number Z, in the complex space. W Im(Zy)
R >
From trigonometry we can write that cos(0z;) = RelZ) _ R Re(Zy)
121l /R§+X§

Now we need to bring together all the pieces in the formula of the average power.

]
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Maximum Average Power Transfer 4~

—
b4 s
ac circuit

Now we need to bring together all the pieces in the formula of the average power P.

P—llV [|1.] cos(6.) _1 Vocl VRE + X Vol R, 1 [Voc|?R,
2 L L 2 —\/[(Rth‘l‘RL)Z + (Xth‘l‘XL)z] —\/[(Rth‘l‘RL)Z + (Xth+XL)2] \/R% + XE 2 (Rth+RL)2 + (Xth+XL)2

How to maximize this expression as a function of the load parameters R, and X, ? Mathematically (see the book) you
can calculate the partial derivatives with respect to R, and X| and set them to zero to derive two conditions.

Trusting the derivations of the book, we finally obtain the conditions that we looked for to maximize the average power

delivered to the load, i.e. Xy, = —X; and R, = Jth + (Xep+X1)?

— _g—

Combining the two equations above we get that Z; = Z:h so the impedance of the load is equal to the
complex conjugate of the Thevenin impedance! Key result!

1 [Vocl®Ry  _ 11Vocl®Ren _ [Vocl?
2(RentRL)? 2 (2Ren)? 8Ry

_ —

] _
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Maximum Average Power Transfer 5

What happens if the load is purely resistive? There is no load reactance X; = 0,i.e. Z, = R,

The two conditions for maximizing the average power become:

X, = 0 (purely resistive load) and R; = /thh + X% = |Z,

Essentially the resistance (or impedance, they are the same in this case because there is no load reactance)
of the load is equal to the magnitude of the Thevenin impedance. Another key result!

%
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Coffee Break
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Effective or RMS value
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Effective or RMS Value 1

« We have seen that the average absorbed power depends on the type(s) of sources
that supply the power

— DC (in Linear CircuitA) > I°R :
— Sinusoidal (with the assumption of purely resistive network) -> (I/Z)IMR

« But these are not the only possibilities, as in general the source can assume any
periodic shape as a function of time -> We should like a general comparison
instrument.

« Consequently, we define the effective value of any periodic source function, a tool to
compare the power delivered by this function to the power delivered by a reference DC
source.

]
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Effective or RMS Value 2

We consider the periodic (not necessarily sinusoidal) current i(t)

« The average power delivered to a resistance R by this currentis P = %fOTR i2(t)dt

 The effective value of the current, I+, is the DC current that delivers the same
average power P to a resistor compared to the periodic current, so P = Rleff

* Equating the two values of the power:

t0+T , 1 ptot7
]2 R __'[ Rdf — Ieﬁ’ :\/—I ;2 (t)df

%
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Effective or RMS Value 3
I, = \/% j;°+Ti2 ()dt

Important to note that the effective value is calculated via an RMS (Root Mean Square)
operation, so effective or RMS values are synonyms.

+  We firstly take the square of the instantaneous current: square
« Then we average: mean
* And finally we take the square root: root

« Acrucial result is that for sinusoidal sources the RMS/effective value is equal to the
maximum (peak) value divided by the square root of 2.

ro=1 =t

eff rms \/E

%
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Example 2

A sinusoidal voltage with a maximum amplitude of 625 V is applied to the terminals of a 50
Ohm resistor. What is the average power delivered to the resistor?

Use RMS value as it is a sinusoidal source.
The RMS value of the sinusoidal voltage is approximately % =441.94V

_ Verr 2
Hence P = — p— (441.94)

= 3906.25 W.
50

Use the average power formula for purely resistive networks (slide 12). p — l v,1,

P 1VI 1V (VM) L 625 625 3906.25 W
= — = — —_—) = — % ES = .
2 MM ™5 TM A\ R 2 50

%
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Example

3a

Practice Problem 11.7:

*  Find the RMS value of the current waveform. i(7) A
16
0 16¢ O<t<l -
i(t)= _
32—-16¢t 1<t<?2 h i

1
l{.::ins :_ITEZ df:l
T 2

rms

[a6ry? di+

I? =22i6[£tzdt+

%
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o2
[G2-1607 dr]

) ]
1(4—4r+£2)dr

3

3
12 128 E{mzﬁ +%JH _256 I /% ~ 9238 A

Capabilities:

-Write  expression
of waveforms
-Integration

24



i(7) A

Example 3b

| I |

Practice Problem 11.7: 0O 1 2 3 4 5 6

« If the current flows through a 9 Ohm resistor, calculate the average power absorbed
by the resistor.

rms

P=12 R=(9.2382)9) = 768 w

]
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Example 4a

Practice Problem 11.6: The load resistor is adjusted until it absorbs the maximum
average power. Calculate its value R, and the maximum average power absorbed by it.

80 Q2 j60 Q
VWY AILR
120/60°V (+ 90 Q — —j30 Q R
L

%
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80Q  j60Q

Example 4b Lﬁg‘“ m% %

Maximizing the power implies adjusting the load to the Thevenin impedance of the
circuit, which needs to be computed:

Z, =80+ j60
0P
Z,=90]| (-J30)_—90—j30 =9(1-j3)
60)(9— 27
7. =7, |z, =002 _ 500 oas70

80+ j60+9—j27

R, =|Z,|=30Q

Recall the formula of avg power maximization for purely resistive loads!

%
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80 Q2 j60 Q

Example 4c Lﬁg“w W% %

Calculating the Thevenin voltage of the circuit seen by the load:

9)d-13)

L 120./60°) =
( )= 89+ 33

V. —
™ Z,+Z,
V,, =35.982-31.91°

(120 £60°)

The current through the load:

Vo,  3598£-3191°

= - =0. -4.4°
=7 +R, ~47.181-joasy 20764«

The maximum average power absorbed by the load:

L 1
P = 5\ 'R, = 5 (0.6764)*(30) = 6.863 W

%
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Example 5a

Practice Problem 11.14: Calculate the average power absorbed by each of the five
elements in the circuit.

8Q j4Q
—MW 2112
40,/0° V C_r) = _j2Q @) 20,/90° V

What is the average absorbed power of the capacitor and the inductor first of all?

%
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8Q 40
Example 5b ‘"WC) (D;q.jzg mcgjzov
You need voltages and currents for each element.

(4-)I,—jI,=20

L 1, =5/53.14°
— 1, =13.6£17.11°

-120+(j4-32)L, +(-;2)1, =0
'jl] +jlz =j10

For mesh 2:

V. =40£0°
I, =5,53.14°

For the 40-V voltage source:

Watch out for the minus
signs in the power
expression coming from the
For the j20-V voltage source: V, =20£90° passive sign convention.
o The defined mesh currents
I, =13.6£17.11 are entering the sources into
their negative polarities!

-1
P, = (40)(5)cos(-53.149) = - 60 W

-1
P, = (20)(13.6)cos(90°~17.119) = -40 W

]
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Example 5c

For the resistor: 1=1,]=5

v =8|1,|=40

= %(40)(5) =100 W

O (v)

j4Q

T-i2Q m C) 20V

The average power absorbed by the inductor and capacitor is zero watts. (Do you

remember why?)

%
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Apparent Power (not for the exam)

Not part of the exam programme, but you have to know that these quantities (complex
power S and apparent power) exist — if in later courses about energy conversion you
need to look at these concepts, please refer to chapter 11 of the book.

Complex Power

S=P+jQ = Vrms(lrms)* = |Vrms||1rms|4(9v - gi)

Im A
Apparent Power \
S =S| = Vsl | rms| = \/PZ + Q% [VA] s +Q (lagging pf)
Real Power P = Re(S) = S cos(8, — 6;) [Watt] 0,-6, .
9,-6. P Re

Reactive Power Q = Im(S) = Ssin(8,, — 6;) [VAR]

P

.i.‘u Delft Power Factor= i cos(6, — 6;)

-Q (leading pf)
/ 32
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Summary of the day

— Instantaneous power, average power
— Maximum average power transfer
— Effective or RMS value
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Next steps

* SGH (Self-Graded Homework)
assignments.

- Seminar: Tuesday & Friday.

* Next week: Mid-term, best of luck!

+ Week 2.6 -> Magnetically coupled
circuits, ideal transformer

Thank you!

Ui JEXAMS ARE COMING UPI2
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