📌 Overview

This lecture recaps phasors and impedances, then introduces frequency response as how circuits behave vs. frequency (key for filters). Covers transfer functions H(ω) = Y(ω)/X(ω), poles/zeros, decibels (dB) for gain, and Bode plots for visualizing magnitude/phase on log scales. Examples include computing TF for RC circuits and sketching Bodes. Goal: Analyze steady-state sinusoidal responses and approximate TFs graphically.


🎯Learning Objectives

  • Explain frequency response and its role in filters/components.
  • Define transfer functions (voltage/current gain, impedance/admittance) and compute for simple circuits.
  • Identify poles (denom roots, ∞ response) and zeros (num roots, 0 response) in H(s), with s = jω for sinusoids.
  • Convert gains to dB: 20 log₁₀|H| for V/I ratios.
  • Construct/interpret Bode plots: mag (dB) and phase (°) vs. log ω, using standard factors (K, poles/zeros).
  • Solve practice problems: TF from circuit, poles/zeros, Bode sketching.

💡Key Concepts & Definitions

Frequency Response

Variation in circuit output (amplitude/phase) vs. input frequency ω (rad/s, ω = 2πf). For sinusoids, use phasor domain. Important for:

  • Filters: Pass/block frequencies (e.g., radio channels).
  • Components: e.g., amp gain, antenna impedance vs. f.

Impedances (Recap):

  • (real, no phase shift).
  • (inductive, +90° phase).
  • (capacitive, -90° phase).

Admittance .

Transfer Function

: Complex ratio of output Y to input X (phasors).

  • Voltage gain: .
  • Current gain: .
  • Transfer impedance: .
  • Transfer admittance: .

In s-domain: (polynomials). For sinusoids, (σ=0, pure tone; general s=σ+jω for exponentials ).

Poles & Zeros:

  • Zeros: Roots of N(s)=0 → H=0 (output nulls).
  • Poles: Roots of D(s)=0 → H=∞ (resonances/instabilities).
  • Allowed: Stable if poles Re(s)<0. Rare: Right-half poles → unstable oscillations.

Decibels (dB)

Log scale for gain: Compresses wide ranges.

  • Power: .
  • Voltage/Current (same R): (or I).
  • For TF: .
  • Examples: 10x gain = +20 dB; 0.1x = -20 dB. 0 dB = unity gain.

Phase: in degrees.

Bode Plots

Semilog graph: x = log₁₀ ω (decades), y = |H|_{dB} or ∠H (°).

  • Approximate straight lines (asymptotic) for hand-sketching.
  • Standard factors in (poles/zeros):
    1. Constant K: Flat mag 20 log K dB, phase 0°.
    2. Pole at origin : -20 dB/dec, -90°.
    3. Zero at origin : +20 dB/dec, +90°.
    4. Simple pole : Flat → -20 dB/dec at ω=p (corner); phase 0° → -90° (linear -45°/dec near p).
    5. Simple zero : Flat → +20 dB/dec at ω=z; phase 0° → +90°.
    6. Quad pole : Flat → -40 dB/dec at ω=ω_k; phase 0° → -180° (steep if low ζ).
    7. Quad zero: Opposite (+40 dB/dec, +180°).
  • Multiple: Multiply slopes/phases. Low ζ: Peaks in mag, sharp phase.

When approximate? Valid for |ω - corner| > decade (error <3 dB). Exact: Use calc/software. Rare: High-order → ripples.

➗ Formulas

Impedances:

TF Example (Series RLC): .

dB:

Standard Pole: , corner ω=p.


✍️ Notes

Recap: Phasors & Impedances

Sinusoids → phasor .

  • Circuit: Replace with impedances, solve complex eqs.
  • Back to time: .
  • Admittance , parallel circuits.

Example: Series RC: . .

Frequency Response

For fixed ω: Compute |H|, ∠H. Full: Plot vs. all ω → reveals passbands, cutoffs. Why? Filters block noise; e.g., low-pass RC: High f attenuated.

Visual: Bode mag for low-pass: Flat low ω, -20 dB/dec high ω.

graph TD
    A[Low ω: Pass] --> B[High ω: Attenuate]
    B --> C[Filter Application: Audio, RF]

Transfer Functions

Solve circuit in phasor domain: Nodal/mesh with Z(jω). Express .

For sinusoids: Eval at s=jω. Allowed: Linear/time-invariant circuits. Not: Nonlinear (diodes) or time-varying.

Practice Problem 1: Impedance TF (from Lecture) Circuit: Series (inferred: R=10Ω? But Z_C=20/s, so C=1/(20 s)? Wait, Z_C=1/(s C)=20/s → C=1/20 F? Unusual, but proceed. Assume total Z_tot = something + Z_C.

Stepwise:

  1. Identify: Input I_i, output V_o across total Z. .
  2. Components: Assume series R, L? But given Z_C = 20/s (C=0.05 F).
  3. Z_tot = R + jωL + 20/(jω)? But slide: V_o = I_i * Z_tot, Z_C=20/s.
  4. Full: From calc, Z_tot(s) = ? Slide implies Z_tot(s) = 20/s + other? Wait, practice: H(s) = Z_tot = ? Poles/zeros next slide.
  5. Compute: Z_C = 1/(s C) = 20/s → C=1/20 F.
  6. Assume simple: If only C, H=20/s. But circuit has more.
  7. Zeros: Num roots=0 (no s in num). Poles: Denom s=0 (at origin, integrator).

Solution: (if parallel? Wait, series current I_i through all).

  • Zeros: None.
  • Poles: s=0 (DC block? No, integrator). Rare: Pole at 0 → infinite DC gain, but for AC ok.

Example Question 1: Compute TF for Voltage Divider Circuit: Series R1=1kΩ, C=1μF to ground. V_i across R1+C, V_o across C.

Stepwise Plan:

  1. Phasor: Z_R = 1000, Z_C = 1/(jω * 10^{-6}).
  2. H_V(jω) = V_o / V_i = Z_C / (Z_R + Z_C) = \frac{1/(jω C)}{R + 1/(jω C)} = \frac{1}{1 + jω R C}.
  3. RC = 10^{-3} s, corner ω=1/RC=10^3 rad/s.
  4. Standard: Simple pole at p=10^3.
  5. Allowed: Steady-state sinusoid. Not: Transients (use Laplace full s).
  6. Poles: s=-1/RC (stable). Zeros: None.

Math:

Visual: Low-Pass Filter Bode Use pgfplots for approx.

¡101234¡40¡30¡20¡100log10!(rad/s)jHjdB

(Flat 0 dB low ω, -20 dB/dec after ω=10^3 → logω=3.)

Phase: 0° low, -90° high, -45° at corner.

Poles & Zeros

Factor H(s): Zeros where N=0 (block freq), poles D=0 (resonate). For sinusoids: Plot |H(jω)|, peaks at imag poles.

Example Question 2: Find Poles/Zeros H(s) = \frac{s+1}{(s+2)(s^2 + 3s + 2)}.

Stepwise:

  1. Num: s+1=0 → zero s=-1.
  2. Denom: s+2=0 → pole s=-2; s^2+3s+2=(s+1)(s+2)=0 → poles s=-1,-2 (repeated? No).
  3. Zeros: s=-1. Poles: s=-2 (simple), s=-1 (cancels zero? Net simple pole s=-2).
  4. Allowed: Factor fully. Rare: Cancellation → reduce order, but check if exact.
  5. Bode: Zero at 1 rad/s (+20 dB/dec), poles at 1 & 2 (-20 each, net flat high?).

Rare: Complex poles → resonance peak if low damping.

Decibels

Compress: 3 dB ≈ √2 ≈1.4x voltage (double power).

Example: |H|=10 → 20 dB. Phase=45°.

Bode Plots

Hand-sketch: Identify factors, add slopes at corners.

  • Start low ω: DC gain 20 log K.
  • Each simple pole/zero: ±20 dB/dec change.
  • Quad: ±40 dB/dec.
  • Phase: ±90° total, linear transition over decade.

Practice Problem 2: Sketch Bode for H(ω)= \frac{10 jω}{(1 + jω/2)(1 + jω/10)} Stepwise (from Lecture):

  1. Standard form: Already (K=10, zero origin, poles p=2,10).
  2. Low ω: Slope +20 dB/dec (zero), starts at 20 log10=20 dB? Wait, at ω=1: adjust.
  3. At ω=2: Pole → slope 0 dB/dec.
  4. At ω=10: Pole → -20 dB/dec.
  5. Phase: +90° (zero) -45° transitions at poles.
  6. Allowed: Asymptotic approx. Error max 3 dB near corners. Rare: If corners close (<decade), use exact.

Visual: Asymptotic Mag

log ωSlope ContributionCumulative SlopeMag at ω=1
<0+20 (zero)+2020 dB
0-0.3+20+20-
0.3-10 (after p=2)020 dB
>1-20 (after p=10)-20-

For phase: +90° low, drops to 0° mid, -90° high.

Example Question 3: From Bode to TF Bode mag: +40 dB flat to ω=10, then -20 dB/dec.

Stepwise:

  1. Low ω flat → no origin pole/zero. Gain: 40 dB = 20 log K → K=100.
  2. At ω=10: Slope -20 → simple pole p=10.
  3. High: -20 dB/dec confirms single pole.
  4. TF: H(ω) = \frac{100}{1 + jω/10}.
  5. Allowed: Identify changes in slope. Rare: If peak, quad pole (low ζ).

🔗 Resources

  • Presentation:

❓ Post lecture

  • Why Bode approx? Quick sketch vs. exact calc (MATLAB).
  • Difference pole vs. zero? Pole amplifies, zero attenuates at that freq.
  • When use s vs. jω? Sinusoids: jω; transients: full Laplace.

Gaps: Lecture assumes phasor comfort; review Week 2.1 if needed. No circuits drawn—visualize series/parallel.


📖 Homework

  • SGH assignments (self-graded).
  • Practice: Sketch Bode for RC low-pass, compute cutoff.
  • Seminar: Tue/Fri—apply to filters (next week).