Assignment

📌 Overview

A brief description of the assignment.


✏️ Exercises

1.1

1B.1 Z=(XY)’=((A(AB)’)‘(B(AB)’)’)’ X=(AW)’=(A(AB)’)’ Y=(BW)’=(B(AB)’)’ W=(AB)’ Let’s assume there was a typo in the original problem and it was ((A + (AB)’)‘(B + (AB)’)’)‘.
Let X = (AB)‘. The expression is ((A + X)‘(B + X)’)‘.
By De Morgan’s Law: (A + X)” + (B + X)”.
By Double Negation: A + X + B + X.
By Idempotent Law (X + X = X): A + B + X.
Substituting X = (AB)’: A + B + (AB)‘. By De Morgan’s Law: A + B + A’ + B’.
Since A + A’ = 1 and B + B’ = 1, the expression becomes 1 + 1 which is 1.

1B.2 See pdf

1C

AA
CD\AB00011011
0004812
0115🔴913🔴D
C10261014
C113🔴7🔴11🔴15D
BB
X = BC’D+B’CD+A’CD=D(BC’+B’C+A’C) = D(B^C+A’C)
AA
CD\AB00011110
0004128
0115🔴13🔴9D
C113🔴7🔴1511🔴D
C10261410
BB
.i 4
.o 1
.ilb a b c d
.ob x
.p 16
0000 0
0001 0
0010 0
0011 1
0100 0
0101 1
0110 0
0111 1
1000 0
1001 0
1010 0
1011 1
1100 0
1101 1
1110 0
1111 0
.e

x = (!a&c&d) | (b&!c&d) | (!b&c&d);

1A

1B

#10

1C

{
	"versionAtEmbed": "0.3.4",
	"filepath": "lab/attachments/Ink/Drawing/2025.9.18 - 16.30pm.drawing",
	"width": 500,
	"aspectRatio": 1
}


📄 assignment